These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30128926)

  • 1. Absolute and relative pK
    Zeng Q; Jones MR; Brooks BR
    J Comput Aided Mol Des; 2018 Oct; 32(10):1179-1189. PubMed ID: 30128926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An explicit-solvent hybrid QM and MM approach for predicting pKa of small molecules in SAMPL6 challenge.
    Prasad S; Huang J; Zeng Q; Brooks BR
    J Comput Aided Mol Des; 2018 Oct; 32(10):1191-1201. PubMed ID: 30276503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAMPL6: calculation of macroscopic pK
    Selwa E; Kenney IM; Beckstein O; Iorga BI
    J Comput Aided Mol Des; 2018 Oct; 32(10):1203-1216. PubMed ID: 30084080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LogP prediction performance with the SMD solvation model and the M06 density functional family for SAMPL6 blind prediction challenge molecules.
    Guan D; Lui R; Matthews S
    J Comput Aided Mol Des; 2020 May; 34(5):511-522. PubMed ID: 31939103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge.
    Pracht P; Wilcken R; Udvarhelyi A; Rodde S; Grimme S
    J Comput Aided Mol Des; 2018 Oct; 32(10):1139-1149. PubMed ID: 30141103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview of the SAMPL6 pK
    Işık M; Rustenburg AS; Rizzi A; Gunner MR; Mobley DL; Chodera JD
    J Comput Aided Mol Des; 2021 Feb; 35(2):131-166. PubMed ID: 33394238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SAMPL6 challenge on predicting aqueous pK
    Tielker N; Eberlein L; Güssregen S; Kast SM
    J Comput Aided Mol Des; 2018 Oct; 32(10):1151-1163. PubMed ID: 30073500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum chemical predictions of water-octanol partition coefficients applied to the SAMPL6 logP blind challenge.
    Jones MR; Brooks BR
    J Comput Aided Mol Des; 2020 May; 34(5):485-493. PubMed ID: 32002778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pK
    Işık M; Levorse D; Rustenburg AS; Ndukwe IE; Wang H; Wang X; Reibarkh M; Martin GE; Makarov AA; Mobley DL; Rhodes T; Chodera JD
    J Comput Aided Mol Des; 2018 Oct; 32(10):1117-1138. PubMed ID: 30406372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A blind SAMPL6 challenge: insight into the octanol-water partition coefficients of drug-like molecules via a DFT approach.
    Arslan E; Findik BK; Aviyente V
    J Comput Aided Mol Des; 2020 Apr; 34(4):463-470. PubMed ID: 31939104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the n-octanol/water partition coefficients in the SAMPL6 blind challenge from MST continuum solvation calculations.
    Zamora WJ; Pinheiro S; German K; Ràfols C; Curutchet C; Luque FJ
    J Comput Aided Mol Des; 2020 Apr; 34(4):443-451. PubMed ID: 31776809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P Challenge.
    Işık M; Bergazin TD; Fox T; Rizzi A; Chodera JD; Mobley DL
    J Comput Aided Mol Des; 2020 Apr; 34(4):335-370. PubMed ID: 32107702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SAMPL6 challenge on predicting octanol-water partition coefficients from EC-RISM theory.
    Tielker N; Tomazic D; Eberlein L; Güssregen S; Kast SM
    J Comput Aided Mol Des; 2020 Apr; 34(4):453-461. PubMed ID: 31981015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAMPL7 physical property prediction from EC-RISM theory.
    Tielker N; Güssregen S; Kast SM
    J Comput Aided Mol Des; 2021 Aug; 35(8):933-941. PubMed ID: 34278539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting octanol/water partition coefficients and pKa for the SAMPL7 challenge using the SM12, SM8 and SMD solvation models.
    Rodriguez SA; Tran JV; Sabatino SJ; Paluch AS
    J Comput Aided Mol Des; 2022 Sep; 36(9):687-705. PubMed ID: 36117236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SAMPL6 host-guest challenge: binding free energies via a multistep approach.
    Eken Y; Patel P; Díaz T; Jones MR; Wilson AK
    J Comput Aided Mol Des; 2018 Oct; 32(10):1097-1115. PubMed ID: 30225724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the accurate calculation of pKa values in water and acetonitrile.
    Muckerman JT; Skone JH; Ning M; Wasada-Tsutsui Y
    Biochim Biophys Acta; 2013; 1827(8-9):882-91. PubMed ID: 23567870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of log P, pK
    Bergazin TD; Tielker N; Zhang Y; Mao J; Gunner MR; Francisco K; Ballatore C; Kast SM; Mobley DL
    J Comput Aided Mol Des; 2021 Jul; 35(7):771-802. PubMed ID: 34169394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting octanol/water partition coefficients for the SAMPL6 challenge using the SM12, SM8, and SMD solvation models.
    Ouimet JA; Paluch AS
    J Comput Aided Mol Des; 2020 May; 34(5):575-588. PubMed ID: 32002781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of pK
    Jensen JH; Swain CJ; Olsen L
    J Phys Chem A; 2017 Jan; 121(3):699-707. PubMed ID: 28054775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.