These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3012904)

  • 1. Acute effects of carbon monoxide and cyanide on hepatic mitochondrial function.
    Hattori H; Suzuki Y; Fujimiya T; Yamamoto K; Ueda M
    Z Rechtsmed; 1986; 96(1):1-10. PubMed ID: 3012904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposures to carbon monoxide, hydrogen cyanide and their mixtures: interrelationship between gas exposure concentration, time to incapacitation, carboxyhemoglobin and blood cyanide in rats.
    Chaturvedi AK; Sanders DC; Endecott BR; Ritter RM
    J Appl Toxicol; 1995; 15(5):357-63. PubMed ID: 8666718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on the combined action of CO and HCN in terms of concentration-time products.
    Yamamoto K; Kuwahara C
    Z Rechtsmed; 1981; 86(4):287-94. PubMed ID: 6266175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the beta-hydroxybutyrate/acetoacetate ratio on the redox states of mitochondrial NAD(P) and cytochrome c systems, extramitochondrial ATP/ADP ratio and the respiration of isolated liver mitochondria in the resting state.
    Schönfeld P; Bohnensack R; Böhme G; Kunz W
    Biomed Biochim Acta; 1983; 42(1):3-13. PubMed ID: 6309158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hepatic artery embolization on the adenylate energy charge level and the redox state of the cirrhotic liver.
    Taki Y; Jikko A; Morimoto T; Yokoo N; Tanaka J; Tani T; Kamiyama Y; Tobe T; Ozawa K
    Res Exp Med (Berl); 1986; 186(3):179-83. PubMed ID: 3738218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of different conditions of acute exposure to carbon monoxide on the cerebral high-energy phosphates and ultrastructure of brain mitochondria in rats.
    Sokal JA; Opacka J; Górny R; Kolakowski J
    Toxicol Lett; 1982 May; 11(3-4):213-9. PubMed ID: 7101313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver.
    Kinnula VL; Hassinen I
    Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetoacetate and malate effects on succinate and energy production by O2-deprived liver mitochondria supplied with 2-oxoglutarate.
    Guidoux R
    Arch Biochem Biophys; 1991 Jun; 287(2):397-402. PubMed ID: 1898011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of acute carbon monoxide intoxication on the cerebral energy metabolism of the rat.
    MacMillan V
    Can J Physiol Pharmacol; 1975 Jun; 53(3):354-62. PubMed ID: 1148922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox state in liver mitochondria in acute copper sulfate poisoning.
    Nakatani T; Spolter L; Kobayashi K
    Life Sci; 1994; 54(14):967-74. PubMed ID: 8139386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of inhibitors of mitochondrial energy production on hepatic glutathione, UDP-glucuronic acid, and adenosine 3'-phosphate-5'-phosphosulfate concentrations.
    Dills RL; Klaassen CD
    Drug Metab Dispos; 1986; 14(2):190-6. PubMed ID: 2870893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of halothane and decreased PO2 on high energy phosphate levels maintained by isolated rat liver mitochondria.
    Becker GL; Miletich DJ; Albrecht RF
    Anesth Analg; 1986 Nov; 65(11):1130-4. PubMed ID: 3767011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional cerebral energy metabolism in acute carbon monoxide intoxication.
    MacMillan V
    Can J Physiol Pharmacol; 1977 Feb; 55(1):111-6. PubMed ID: 843986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired hepatic energy metabolism in rat acute pancreatitis: protective effects of prostaglandin E2 and synthetic protease inhibitor ONO 3307.
    Hirano T; Manabe T; Tobe T
    J Surg Res; 1992 Sep; 53(3):238-44. PubMed ID: 1528049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in hepatic energy metabolism in experimental acute pancreatitis.
    Yan LN; Ozawa K; Kobayashi N
    Chin Med J (Engl); 1992 Aug; 105(8):684-8. PubMed ID: 1458973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of precursors of biosyntheses on the energy metabolism of the liver cell.
    Letko G; Küster U; Pohl K
    Biomed Biochim Acta; 1983; 42(4):323-33. PubMed ID: 6312977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic mitochondrial energy production in rats with chronic iron overload.
    Bacon BR; O'Neill R; Britton RS
    Gastroenterology; 1993 Oct; 105(4):1134-40. PubMed ID: 8405859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Attempt to estimate risks of fatal poisoning on the basis of HCN and HbCO concentrations in blood of fire victims].
    Grabowska T; Sybirska H; Maliński M
    Arch Med Sadowej Kryminol; 2003; 53(1):9-17. PubMed ID: 14669546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria.
    Lê-Quôc D; Lê-Quôc K
    Arch Biochem Biophys; 1989 Sep; 273(2):466-78. PubMed ID: 2774563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The content of carbon monoxide in the tissues of rats intoxicated with carbon monoxide in various conditions of acute exposure.
    Sokal JA; Majka J; Palus J
    Arch Toxicol; 1984 Dec; 56(2):106-8. PubMed ID: 6532373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.