These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30129234)

  • 1. Controllable Synthesis of Few-Layer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO
    Zhang Y; Zhang X; Ling Y; Li F; Bond AM; Zhang J
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13283-13287. PubMed ID: 30129234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO
    Tang SF; Lu XL; Zhang C; Wei ZW; Si R; Lu TB
    Sci Bull (Beijing); 2021 Aug; 66(15):1533-1541. PubMed ID: 36654282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indium doped bismuth subcarbonate nanosheets for efficient electrochemical reduction of carbon dioxide to formate in a wide potential window.
    Wu M; Xiong Y; Hu B; Zhang Z; Wei B; Li L; Hao J; Shi W
    J Colloid Interface Sci; 2022 Oct; 624():261-269. PubMed ID: 35660895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphomolybdic Acid-Assisted Growth of Ultrathin Bismuth Nanosheets for Enhanced Electrocatalytic Reduction of CO
    Guo SX; Zhang Y; Zhang X; Easton CD; MacFarlane DR; Zhang J
    ChemSusChem; 2019 Mar; 12(5):1091-1100. PubMed ID: 30648342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin Bismuth Nanosheets as a Highly Efficient CO
    Su P; Xu W; Qiu Y; Zhang T; Li X; Zhang H
    ChemSusChem; 2018 Mar; 11(5):848-853. PubMed ID: 29323463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO
    Wang D; Liu C; Zhang Y; Wang Y; Wang Z; Ding D; Cui Y; Zhu X; Pan C; Lou Y; Li F; Zhu Y; Zhang Y
    Small; 2021 Jul; 17(29):e2100602. PubMed ID: 34121332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrangea-like Superstructured Micro/Nanoreactor of Topotactically Converted Ultrathin Bismuth Nanosheets for Highly Active CO
    Peng CJ; Zeng G; Ma DD; Cao C; Zhou S; Wu XT; Zhu QL
    ACS Appl Mater Interfaces; 2021 May; 13(17):20589-20597. PubMed ID: 33878860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface-Induced Electrocatalytic Enhancement of CO
    Sui PF; Xu C; Zhu MN; Liu S; Liu Q; Luo JL
    Small; 2022 Jan; 18(1):e2105682. PubMed ID: 34786849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unlocking the Electrocatalytic Activity of Antimony for CO
    Li F; Xue M; Li J; Ma X; Chen L; Zhang X; MacFarlane DR; Zhang J
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14718-14722. PubMed ID: 28971548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Production of Few-Layer Niobium Disulfide Nanosheets via Electrochemical Exfoliation for Energy-Efficient Hydrogen Evolution Reaction.
    Si J; Zheng Q; Chen H; Lei C; Suo Y; Yang B; Zhang Z; Li Z; Lei L; Hou Y; Ostrikov KK
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13205-13213. PubMed ID: 30882199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi
    Lv W; Bei J; Zhang R; Wang W; Kong F; Wang L; Wang W
    ACS Omega; 2017 Jun; 2(6):2561-2567. PubMed ID: 31457600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molten-Salt-Assisted Synthesis of Bismuth Nanosheets for Long-term Continuous Electrocatalytic Conversion of CO
    Yi L; Chen J; Shao P; Huang J; Peng X; Li J; Wang G; Zhang C; Wen Z
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20112-20119. PubMed ID: 32686329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO
    Lu P; Gao D; He H; Wang Q; Liu Z; Dipazir S; Yuan M; Zu W; Zhang G
    Nanoscale; 2019 Apr; 11(16):7805-7812. PubMed ID: 30958497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen Vacancies in ZnO Nanosheets Enhance CO
    Geng Z; Kong X; Chen W; Su H; Liu Y; Cai F; Wang G; Zeng J
    Angew Chem Int Ed Engl; 2018 May; 57(21):6054-6059. PubMed ID: 29645366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Enriched Room-Temperature Liquid Bismuth for Catalytic CO
    Guo J; Zhi X; Wang D; Qu L; Zavabeti A; Fan Q; Zhang Y; Butson JD; Yang J; Wu C; Liu JZ; Hu G; Fan X; Li GK
    Small; 2024 May; ():e2401777. PubMed ID: 38747025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO
    Peng CJ; Wu XT; Zeng G; Zhu QL
    Chem Asian J; 2021 Jun; 16(12):1539-1544. PubMed ID: 33929102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-Organic Framework-Derived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO
    Deng P; Yang F; Wang Z; Chen S; Zhou Y; Zaman S; Xia BY
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10807-10813. PubMed ID: 32232890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the Chemical Compositions of Bismuth Oxyiodides on the Electroreduction of Carbon Dioxide to Formate.
    Wang Q; Ma M; Zhang S; Lu K; Fu L; Liu X; Chen Y
    Chempluschem; 2020 Apr; 85(4):672-678. PubMed ID: 32237229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general strategy for obtaining BiOX nanoplates derived Bi nanosheets as efficient CO
    Liu P; Liu H; Zhang S; Wang J; Wang C
    J Colloid Interface Sci; 2021 Nov; 602():740-747. PubMed ID: 34153712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bismuth Nanosheets Derived by In Situ Morphology Transformation of Bismuth Oxides for Selective Electrochemical CO
    Lee J; Liu H; Chen Y; Li W
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14210-14217. PubMed ID: 35297598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.