These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 30129287)
1. Controlling Surface Charge Generated by Contact Electrification: Strategies and Applications. Chen L; Shi Q; Sun Y; Nguyen T; Lee C; Soh S Adv Mater; 2018 Nov; 30(47):e1802405. PubMed ID: 30129287 [TBL] [Abstract][Full Text] [Related]
2. Nonconductive Noncharging Composites: Tunable and Stretchable Materials for Adaptive Prevention of Charging by Contact Electrification. Zhang X; Ao CK; Soh S ACS Appl Mater Interfaces; 2020 Feb; 12(5):5274-5285. PubMed ID: 31769961 [TBL] [Abstract][Full Text] [Related]
3. Manipulating nanoscale contact electrification by an applied electric field. Zhou YS; Wang S; Yang Y; Zhu G; Niu S; Lin ZH; Liu Y; Wang ZL Nano Lett; 2014 Mar; 14(3):1567-72. PubMed ID: 24479730 [TBL] [Abstract][Full Text] [Related]
4. Universal Nature-Inspired Coatings for Preparing Noncharging Surfaces. Fang Y; Gonuguntla S; Soh S ACS Appl Mater Interfaces; 2017 Sep; 9(37):32220-32226. PubMed ID: 28820577 [TBL] [Abstract][Full Text] [Related]
5. On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Xu C; Zi Y; Wang AC; Zou H; Dai Y; He X; Wang P; Wang YC; Feng P; Li D; Wang ZL Adv Mater; 2018 Apr; 30(15):e1706790. PubMed ID: 29508454 [TBL] [Abstract][Full Text] [Related]
6. Probing Contact Electrification: A Cohesively Sticky Problem. Sherrell PC; Sutka A; Shepelin NA; Lapcinskis L; Verners O; Germane L; Timusk M; Fenati RA; Malnieks K; Ellis AV ACS Appl Mater Interfaces; 2021 Sep; 13(37):44935-44947. PubMed ID: 34498850 [TBL] [Abstract][Full Text] [Related]
7. Nanoscale charge transfer and diffusion at the MoS Xu R; Ye S; Xu K; Lei L; Hussain S; Zheng Z; Pang F; Xing S; Liu X; Ji W; Cheng Z Nanotechnology; 2018 Aug; 29(35):355701. PubMed ID: 29873636 [TBL] [Abstract][Full Text] [Related]
8. Contact-Electrification between Two Identical Materials: Curvature Effect. Xu C; Zhang B; Wang AC; Zou H; Liu G; Ding W; Wu C; Ma M; Feng P; Lin Z; Wang ZL ACS Nano; 2019 Feb; 13(2):2034-2041. PubMed ID: 30707552 [TBL] [Abstract][Full Text] [Related]
9. Solid-to-Liquid Charge Transfer for Generating Droplets with Tunable Charge. Sun Y; Huang X; Soh S Angew Chem Int Ed Engl; 2016 Aug; 55(34):9956-60. PubMed ID: 27417888 [TBL] [Abstract][Full Text] [Related]
10. Contact electrification through interfacial charge transfer: a mechanistic viewpoint on solid-liquid interfaces. Panda PK; Singh D; Köhler MH; de Vargas DD; Wang ZL; Ahuja R Nanoscale Adv; 2022 Feb; 4(3):884-893. PubMed ID: 36131814 [TBL] [Abstract][Full Text] [Related]
11. Understanding contact electrification at liquid-solid interfaces from surface electronic structure. Sun M; Lu Q; Wang ZL; Huang B Nat Commun; 2021 Mar; 12(1):1752. PubMed ID: 33741951 [TBL] [Abstract][Full Text] [Related]
12. Spontaneous Wetting Induced by Contact-Electrification at Liquid-Solid Interface. Tang Z; Yang D; Guo H; Lin S; Wang ZL Adv Mater; 2024 Jun; 36(25):e2400451. PubMed ID: 38529563 [TBL] [Abstract][Full Text] [Related]
13. Controlling the kinetics of contact electrification with patterned surfaces. Thomas SW; Vella SJ; Dickey MD; Kaufman GK; Whitesides GM J Am Chem Soc; 2009 Jul; 131(25):8746-7. PubMed ID: 19499916 [TBL] [Abstract][Full Text] [Related]
14. Wind-blown Sand Electrification Inspired Triboelectric Energy Harvesting Based on Homogeneous Inorganic Materials Contact: A Theoretical Study and Prediction. Hu W; Wu W; Zhou HM Sci Rep; 2016 Jan; 6():19912. PubMed ID: 26817411 [TBL] [Abstract][Full Text] [Related]
15. Study of Contact Electrification at Liquid-Gas Interface. Wang F; Yang P; Tao X; Shi Y; Li S; Liu Z; Chen X; Wang ZL ACS Nano; 2021 Nov; 15(11):18206-18213. PubMed ID: 34677929 [TBL] [Abstract][Full Text] [Related]
16. An Evaluation System for the Contact Electrification of a Single Microparticle Using Microelectromechanical-Based Actuated Tweezers. Yamaguchi D Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874856 [TBL] [Abstract][Full Text] [Related]
17. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530 [TBL] [Abstract][Full Text] [Related]
18. Reversible and Continuously Tunable Control of Charge of Close Surfaces. Pandey RK; Sun Y; Nakanishi H; Soh S J Phys Chem Lett; 2017 Dec; 8(24):6142-6147. PubMed ID: 29206045 [TBL] [Abstract][Full Text] [Related]
20. Coexistence of Contact Electrification and Dynamic p-n Junction Modulation Effects in Triboelectrification. Wang H; Huang S; Kuang H; Zou T; Rajagopalan P; Wang X; Li Y; Jin H; Dong S; Zhou H; Hasan T; Occhipinti LG; Kim JM; Luo J ACS Appl Mater Interfaces; 2022 Jul; 14(26):30410-30419. PubMed ID: 35758022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]