These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30129287)

  • 21. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advancements in solid-liquid triboelectric nanogenerators for energy harvesting and self-powered applications.
    Chatterjee S; Burman SR; Khan I; Saha S; Choi D; Lee S; Lin ZH
    Nanoscale; 2020 Sep; 12(34):17663-17697. PubMed ID: 32821897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charging of multiple interacting particles by contact electrification.
    Soh S; Liu H; Cademartiri R; Yoon HJ; Whitesides GM
    J Am Chem Soc; 2014 Sep; 136(38):13348-54. PubMed ID: 25171262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-powered liquid chemical sensors based on solid-liquid contact electrification.
    Ying Z; Long Y; Yang F; Dong Y; Li J; Zhang Z; Wang X
    Analyst; 2021 Mar; 146(5):1656-1662. PubMed ID: 33514956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct probing of contact electrification by using optical second harmonic generation technique.
    Chen X; Taguchi D; Manaka T; Iwamoto M; Wang ZL
    Sci Rep; 2015 Aug; 5():13019. PubMed ID: 26272162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contact Electrification of Biological and Bio-Inspired Adhesive Materials on SiO
    Tao J; Wang L; Kong K; Hu M; Dai Z
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36546916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Influence of Microscale Surface Roughness on Water-Droplet Contact Electrification.
    Helseth LE
    Langmuir; 2019 Jun; 35(25):8268-8275. PubMed ID: 31142118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding.
    Wang S; Xie Y; Niu S; Lin L; Liu C; Zhou YS; Wang ZL
    Adv Mater; 2014 Oct; 26(39):6720-8. PubMed ID: 25146891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contact electrification between identical polymers as the basis for triboelectric/flexoelectric materials.
    Šutka A; Mālnieks K; Lapčinskis L; Timusk M; Kalniņš K; Kovaļovs A; Bitenieks J; Knite M; Stevens D; Grunlan J
    Phys Chem Chem Phys; 2020 Jun; 22(23):13299-13305. PubMed ID: 32507872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ quantitative study of nanoscale triboelectrification and patterning.
    Zhou YS; Liu Y; Zhu G; Lin ZH; Pan C; Jing Q; Wang ZL
    Nano Lett; 2013 Jun; 13(6):2771-6. PubMed ID: 23627668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification.
    Xu C; Wang AC; Zou H; Zhang B; Zhang C; Zi Y; Pan L; Wang P; Feng P; Lin Z; Wang ZL
    Adv Mater; 2018 Sep; 30(38):e1803968. PubMed ID: 30091484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Contact Electrification Mechanisms of Selected Polymers and Surface-Functionalized Molecules.
    Verners O; Das A
    J Phys Chem B; 2023 Nov; 127(46):10035-10042. PubMed ID: 37944987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators.
    Deng W; Zhou Y; Zhao X; Zhang S; Zou Y; Xu J; Yeh MH; Guo H; Chen J
    ACS Nano; 2020 Jul; 14(7):9050-9058. PubMed ID: 32627531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Charging Events in Contact-Separation Electrification.
    Musa UG; Cezan SD; Baytekin B; Baytekin HT
    Sci Rep; 2018 Feb; 8(1):2472. PubMed ID: 29410440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Static charge is an ionic molecular fragment.
    Fang Y; Ao CK; Jiang Y; Sun Y; Chen L; Soh S
    Nat Commun; 2024 Mar; 15(1):1986. PubMed ID: 38443343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A tool for studying contact electrification in systems comprising metals and insulating polymers.
    Wiles JA; Grzybowski BA; Winkleman A; Whitesides GM
    Anal Chem; 2003 Sep; 75(18):4859-67. PubMed ID: 14674464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of Triboelectric Series and Chirality Detection of Amino Acids Using Triboelectric Nanogenerator.
    Pal A; Ganguly A; Wei PH; Barman SR; Chang CC; Lin ZH
    Adv Sci (Weinh); 2024 Jan; 11(4):e2307266. PubMed ID: 38032132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatics and Electrochemistry: Mechanism and Scope of Charge-Transfer Reactions on the Surface of Tribocharged Insulators.
    Zhang J; Coote ML; Ciampi S
    J Am Chem Soc; 2021 Mar; 143(8):3019-3032. PubMed ID: 33600158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect.
    Lin S; Xu L; Zhu L; Chen X; Wang ZL
    Adv Mater; 2019 Jul; 31(27):e1901418. PubMed ID: 31095783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy.
    Li S; Zhou Y; Zi Y; Zhang G; Wang ZL
    ACS Nano; 2016 Feb; 10(2):2528-35. PubMed ID: 26824304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.