BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30129582)

  • 21. Approaches to optical neuromodulation from rodents to non-human primates by integrated optoelectronic devices.
    Wang J; Ozden I; Diagne M; Wagner F; Borton D; Brush B; Agha N; Burwell R; Sheinberg D; Diester I; Deisseroth K; Nurmikko A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7525-8. PubMed ID: 22256079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical stimulation of primary motor cortex with 980nm infrared neural stimulation.
    Wang MQ; Xia QL; Wu XY; Wang X; Zheng XL; Hou WS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6143-6. PubMed ID: 25571399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.
    Kwon KY; Sirowatka B; Weber A; Li W
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):593-600. PubMed ID: 24144668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LED Optrode with Integrated Temperature Sensing for Optogenetics.
    Goncalves SB; Palha JM; Fernandes HC; Souto MR; Pimenta S; Dong T; Yang Z; Ribeiro JF; Correia JH
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of the temporal effects of heating during infrared neural stimulation.
    Thompson AC; Wade SA; Cadusch PJ; Brown WG; Stoddart PR
    J Biomed Opt; 2013 Mar; 18(3):035004. PubMed ID: 23471490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation.
    Feng H; Shu W; Chen X; Zhang Y; Lu Y; Wang L; Chen Y
    Biomed Microdevices; 2015 Oct; 17(5):101. PubMed ID: 26371060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heating during infrared neural stimulation.
    Liljemalm R; Nyberg T; von Holst H
    Lasers Surg Med; 2013 Sep; 45(7):469-81. PubMed ID: 23832680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Opto-electro-thermal optimization of photonic probes for optogenetic neural stimulation.
    Dong N; Berlinguer-Palmini R; Soltan A; Ponon N; O'Neil A; Travelyan A; Maaskant P; Degenaar P; Sun X
    J Biophotonics; 2018 Oct; 11(10):e201700358. PubMed ID: 29603666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A wireless implantable switched-capacitor based optogenetic stimulating system.
    Lee HM; Kwon KY; Li W; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():878-81. PubMed ID: 25570099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of radiant exposure and repetition rate in infrared neural stimulation with near-infrared lasers.
    Alemzadeh-Ansari MJ; Ansari MA; Zakeri M; Haghjoo M
    Lasers Med Sci; 2019 Oct; 34(8):1555-1566. PubMed ID: 30887233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Infrared neural stimulation and inhibition using an implantable silicon photonic microdevice.
    Horváth ÁC; Borbély S; Boros ÖC; Komáromi L; Koppa P; Barthó P; Fekete Z
    Microsyst Nanoeng; 2020; 6():44. PubMed ID: 34567656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ZnO subwavelength wires for fast-response mid-infrared detection.
    Dai W; Yang Q; Gu F; Tong L
    Opt Express; 2009 Nov; 17(24):21808-12. PubMed ID: 19997425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optogenetic Tools for Confined Stimulation in Deep Brain Structures.
    Castonguay A; Thomas S; Lesage F; Casanova C
    Methods Mol Biol; 2016; 1408():267-79. PubMed ID: 26965129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the Debye dielectric response in the time domain for a liquid crystal-based biopotential optrode.
    Srinivas H; Al Abed A; Ladouceur F; Lovell NH; Silvestri L
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4857-4860. PubMed ID: 28269358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An artefact-resist optrode with internal shielding structure for low-noise neural modulation.
    Wang L; Ge C; Wang M; Ji B; Guo Z; Wang X; Yang B; Li C; Liu J
    J Neural Eng; 2020 Aug; 17(4):046024. PubMed ID: 32640443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.
    Ganguly M; Miller S; Mitra K
    Lasers Surg Med; 2015 Nov; 47(9):711-22. PubMed ID: 26349633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Holographically patterned activation using photo-absorber induced neural-thermal stimulation.
    Farah N; Zoubi A; Matar S; Golan L; Marom A; Butson CR; Brosh I; Shoham S
    J Neural Eng; 2013 Oct; 10(5):056004. PubMed ID: 23902876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical approaches for determining heat distributions and thermal criteria for infrared neural stimulation.
    Norton BJ; Bowler MA; Wells JD; Keller MD
    J Biomed Opt; 2013 Sep; 18(9):098001. PubMed ID: 24002195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics.
    Atabaki AH; Shah Hosseini E; Eftekhar AA; Yegnanarayanan S; Adibi A
    Opt Express; 2010 Aug; 18(17):18312-23. PubMed ID: 20721224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal computed tomography for biological tissue reconstruction based on radiation balance.
    Wan X; Wang P; Zhang H
    Biomed Mater Eng; 2014; 24(1):1157-65. PubMed ID: 24212009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.