These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30129582)

  • 81. Electromagnetic and thermal evaluation of an applicator specialized to permit high-resolution non-perturbing optical evaluation of cells being irradiated in the W-band.
    Pickard WF; Moros EG; Shafirstein G
    Bioelectromagnetics; 2010 Feb; 31(2):140-9. PubMed ID: 19731242
    [TBL] [Abstract][Full Text] [Related]  

  • 82. micro-Hotplate enhanced optical heating by infrared light for single cell treatment.
    Reinhardt H; Dittrich PS; Manz A; Franzke J
    Lab Chip; 2007 Nov; 7(11):1509-14. PubMed ID: 17960279
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability.
    Gagnon-Turcotte G; Kisomi AA; Ameli R; Camaro CO; LeChasseur Y; Néron JL; Bareil PB; Fortier P; Bories C; de Koninck Y; Gosselin B
    Sensors (Basel); 2015 Sep; 15(9):22776-97. PubMed ID: 26371006
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A 1024-channel 6 mW/mm2 optical stimulator for in-vitro neuroscience experiments.
    Cai L; Wang B; Huang X; Yang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6133-8. PubMed ID: 25571397
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Fabrication and modification of implantable optrode arrays for
    Wang L; Huang K; Zhong C; Wang L; Lu Y
    Biophys Rep; 2018; 4(2):82-93. PubMed ID: 29756008
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Thermal infrared imaging: toward diagnostic medical capability.
    Arthur DT; Khan MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6146-9. PubMed ID: 22255742
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application.
    Kwon KY; Lee HM; Ghovanloo M; Weber A; Li W
    Front Syst Neurosci; 2015; 9():69. PubMed ID: 25999823
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A biopotential optrode array: operation principles and simulations.
    Al Abed A; Srinivas H; Firth J; Ladouceur F; Lovell NH; Silvestri L
    Sci Rep; 2018 Feb; 8(1):2690. PubMed ID: 29426924
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Tapered Fibers Combined With a Multi-Electrode Array for Optogenetics in Mouse Medial Prefrontal Cortex.
    Sileo L; Bitzenhofer SH; Spagnolo B; Pöpplau JA; Holzhammer T; Pisanello M; Pisano F; Bellistri E; Maglie E; De Vittorio M; Ruther P; Hanganu-Opatz IL; Pisanello F
    Front Neurosci; 2018; 12():771. PubMed ID: 30416424
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The computation of temperature rises in the human eye induced by infrared radiation.
    Scott JA
    Phys Med Biol; 1988 Feb; 33(2):243-57. PubMed ID: 3362967
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Histological and electrophysiological evidence on the safe operation of a sharp-tip multimodal optrode during infrared neuromodulation of the rat cortex.
    Horváth ÁC; Borbély S; Mihók F; Fürjes P; Barthó P; Fekete Z
    Sci Rep; 2022 Jul; 12(1):11434. PubMed ID: 35794160
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Measurement, modeling, and prediction of temperature rise due to optogenetic brain stimulation.
    Arias-Gil G; Ohl FW; Takagaki K; Lippert MT
    Neurophotonics; 2016 Oct; 3(4):045007. PubMed ID: 27981063
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Infrared neural stimulation in the cochlea.
    Richter CP; Rajguru S; Bendett M
    Proc SPIE Int Soc Opt Eng; 2013 Mar; 8565():85651Y. PubMed ID: 25075260
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Influence of ambient temperature on the modulation transfer function of an infrared membrane diffraction optical system.
    Wang D; Zhi X; Zhang W; Yin Z; Jiang S; Niu R
    Appl Opt; 2018 Oct; 57(30):9096-9105. PubMed ID: 30461899
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Targeted Optical Neural Stimulation: A New Era for Personalized Medicine.
    Ping A; Pan L; Zhang J; Xu K; Schriver KE; Zhu J; Roe AW
    Neuroscientist; 2023 Apr; 29(2):202-220. PubMed ID: 34865559
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Design of a stimulation protocol to predict temperature distribution in subcutaneous tissue using the finite element model.
    Myoung HS; Kim DH; Kim HS; Lee KJ
    Biomed Eng Lett; 2017 Aug; 7(3):261-266. PubMed ID: 30603174
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Light extinction and absorption by arbitrarily oriented finite circular cylinders by use of geometrical path statistics of rays.
    Xu M
    Appl Opt; 2003 Nov; 42(33):6710-23. PubMed ID: 14664225
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Optical stimulation of neural tissue.
    Richardson RT; Ibbotson MR; Thompson AC; Wise AK; Fallon JB
    Healthc Technol Lett; 2020 Jun; 7(3):58-65. PubMed ID: 32754339
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Fused silica microlenses for hermetic packages as part of implantable optrodes.
    Rudmann L; Huber SD; Ordonez JS; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7143-6. PubMed ID: 26737939
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Optogenetics meets optical wavefront shaping.
    Shoham S
    Nat Methods; 2010 Oct; 7(10):798-9. PubMed ID: 20885441
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.