These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30129586)

  • 1. Effect of two annealing processes on the thermal regeneration of fiber Bragg gratings in hydrogenated standard optical fibers.
    Lu K; Yang H; Lim KS; Ahmad H; Zhang P; Tian Q; Ding X; Qiao X
    Appl Opt; 2018 Aug; 57(24):6971-6975. PubMed ID: 30129586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pre-annealing on the thermal regeneration of fiber Bragg gratings in standard optical fibers.
    Holmberg P; Laurell F; Fokine M
    Opt Express; 2015 Oct; 23(21):27520-35. PubMed ID: 26480412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Spectral repeatability of regenerated fiber gratings prepared by high temperature annealing].
    Wang T; He DW; Wang YS; Quan Y; Wang PF; Yin ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1411-4. PubMed ID: 23905363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resurgent regenerated fiber Bragg gratings and thermal annealing techniques for ultra-high temperature sensing beyond 1400°C.
    Gunawardena DS; Law OK; Liu Z; Zhong X; Ho YT; Tam HY
    Opt Express; 2020 Mar; 28(7):10595-10608. PubMed ID: 32225641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast thermal regeneration of fiber Bragg gratings.
    Bueno A; Kinet D; Mégret P; Caucheteur C
    Opt Lett; 2013 Oct; 38(20):4178-81. PubMed ID: 24321953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain measurement at temperatures up to 800°C using regenerated gratings produced in the highGe-doped and B/Ge co-doped fibers.
    Zhang P; Yang H; Wang Y; Liu H; Lim KS; Gunawardena DS; Ahmad H
    Appl Opt; 2017 Aug; 56(22):6073-6078. PubMed ID: 29047797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation.
    Li Y; Yang M; Wang DN; Lu J; Sun T; Grattan KT
    Opt Express; 2009 Oct; 17(22):19785-90. PubMed ID: 19997199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration.
    Lindner E; Canning J; Chojetzki C; Brückner S; Becker M; Rothhardt M; Bartelt H
    Appl Opt; 2011 Jun; 50(17):2519-22. PubMed ID: 21673753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal regeneration of fiber Bragg gratings in photosensitive fibers.
    Lindner E; Chojetzki C; Brückner S; Becker M; Rothhardt M; Bartelt H
    Opt Express; 2009 Jul; 17(15):12523-31. PubMed ID: 19654654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber Bragg grating regeneration at 450°C for improved high temperature sensing.
    Chah K; Yüksel K; Kinet D; Yazd NS; Mégret P; Caucheteur C
    Opt Lett; 2019 Aug; 44(16):4036-4039. PubMed ID: 31415541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk regeneration of optical fiber Bragg gratings.
    Shao LY; Wang T; Canning J; Cook K; Tam HY
    Appl Opt; 2012 Oct; 51(30):7165-9. PubMed ID: 23089767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths.
    Pospori A; Marques CAF; Sagias G; Lamela-Rivera H; Webb DJ
    Opt Express; 2018 Jan; 26(2):1411-1421. PubMed ID: 29402015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observations from direct UV-written, non-hydrogen-loaded, thermally regenerated Bragg gratings in double-clad photosensitive fiber.
    Jantzen A; Bannerman RHS; Berry SA; Gates JC; Gow PC; Boyd LJ; Smith PGR; Holmes C
    Opt Lett; 2017 Oct; 42(19):3741-3744. PubMed ID: 28957116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO₂-laser annealing.
    Lai MH; Lim KS; Gunawardena DS; Yang HZ; Chong WY; Ahmad H
    Opt Lett; 2015 Mar; 40(5):748-51. PubMed ID: 25723423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of grating regeneration by direct CO(2) laser annealing.
    Lai MH; Gunawardena DS; Lim KS; Yang HZ; Ahmad H
    Opt Express; 2015 Jan; 23(1):452-63. PubMed ID: 25835690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing.
    Bandyopadhyay S; Canning J; Biswas P; Stevenson M; Dasgupta K
    Opt Express; 2011 Jan; 19(2):1198-206. PubMed ID: 21263661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposed core microstructured optical fiber Bragg gratings: refractive index sensing.
    Warren-Smith SC; Monro TM
    Opt Express; 2014 Jan; 22(2):1480-9. PubMed ID: 24515155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing.
    Chen T; Chen R; Jewart C; Zhang B; Cook K; Canning J; Chen KP
    Opt Lett; 2011 Sep; 36(18):3542-4. PubMed ID: 21931384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of regenerated fiber Bragg grating sensors with long-term stability.
    Celikin M; Barba D; Bastola B; Ruediger A; Rosei F
    Opt Express; 2016 Sep; 24(19):21897-909. PubMed ID: 27661925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels.
    Morana A; Girard S; Marin E; Marcandella C; Paillet P; Périsse J; Macé JR; Boukenter A; Cannas M; Ouerdane Y
    Opt Lett; 2014 Sep; 39(18):5313-6. PubMed ID: 26466259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.