These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 30129707)

  • 21. A likelihood approach to meta-analysis with random effects.
    Hardy RJ; Thompson SG
    Stat Med; 1996 Mar; 15(6):619-29. PubMed ID: 8731004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A random effects meta-analysis model with Box-Cox transformation.
    Yamaguchi Y; Maruo K; Partlett C; Riley RD
    BMC Med Res Methodol; 2017 Jul; 17(1):109. PubMed ID: 28724350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections.
    Noma H
    Stat Med; 2011 Dec; 30(28):3304-12. PubMed ID: 21964669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simplification and implementation of random-effects meta-analyses based on the exact distribution of Cochran's Q.
    Preuß M; Ziegler A
    Methods Inf Med; 2014; 53(1):54-61. PubMed ID: 24317521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An improved method for bivariate meta-analysis when within-study correlations are unknown.
    Hong C; D Riley R; Chen Y
    Res Synth Methods; 2018 Mar; 9(1):73-88. PubMed ID: 29055096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extending DerSimonian and Laird's methodology to perform network meta-analyses with random inconsistency effects.
    Jackson D; Law M; Barrett JK; Turner R; Higgins JP; Salanti G; White IR
    Stat Med; 2016 Mar; 35(6):819-39. PubMed ID: 26423209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Statistical properties of methods based on the Q-statistic for constructing a confidence interval for the between-study variance in meta-analysis.
    van Aert RCM; van Assen MALM; Viechtbauer W
    Res Synth Methods; 2019 Jun; 10(2):225-239. PubMed ID: 30589219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meta-analysis of few small studies in orphan diseases.
    Friede T; Röver C; Wandel S; Neuenschwander B
    Res Synth Methods; 2017 Mar; 8(1):79-91. PubMed ID: 27362487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
    Niedhammer I; Milner A; Witt K; Klingelschmidt J; Khireddine-Medouni I; Alexopoulos EC; Toivanen S; Chastang JF; LaMontagne AD
    Scand J Work Environ Health; 2018 Jan; 44(1):108-110. PubMed ID: 29218357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple confidence interval for meta-analysis.
    Sidik K; Jonkman JN
    Stat Med; 2002 Nov; 21(21):3153-9. PubMed ID: 12375296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Meta-analysis of studies with missing data.
    Yuan Y; Little RJ
    Biometrics; 2009 Jun; 65(2):487-96. PubMed ID: 18565168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Random-effects meta-analysis: the number of studies matters.
    Guolo A; Varin C
    Stat Methods Med Res; 2017 Jun; 26(3):1500-1518. PubMed ID: 25953957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Confidence intervals for the between-study variance in random effects meta-analysis using generalised Cochran heterogeneity statistics.
    Jackson D
    Res Synth Methods; 2013 Sep; 4(3):220-9. PubMed ID: 26053842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Do statistical heterogeneity methods impact the results of meta- analyses? A meta epidemiological study.
    Mheissen S; Khan H; Normando D; Vaiid N; Flores-Mir C
    PLoS One; 2024; 19(3):e0298526. PubMed ID: 38502662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of statistical methods for meta-analysis.
    Brockwell SE; Gordon IR
    Stat Med; 2001 Mar; 20(6):825-40. PubMed ID: 11252006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Meta-analysis of a continuous outcome combining individual patient data and aggregate data: a method based on simulated individual patient data.
    Yamaguchi Y; Sakamoto W; Goto M; Staessen JA; Wang J; Gueyffier F; Riley RD
    Res Synth Methods; 2014 Dec; 5(4):322-51. PubMed ID: 26052956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction intervals for random-effects meta-analysis: A confidence distribution approach.
    Nagashima K; Noma H; Furukawa TA
    Stat Methods Med Res; 2019 Jun; 28(6):1689-1702. PubMed ID: 29745296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uncertainty of the time of first significance in random effects cumulative meta-analysis.
    Berkey CS; Mosteller F; Lau J; Antman EM
    Control Clin Trials; 1996 Oct; 17(5):357-71. PubMed ID: 8932970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interval estimation of the overall treatment effect in random-effects meta-analyses: Recommendations from a simulation study comparing frequentist, Bayesian, and bootstrap methods.
    Weber F; Knapp G; Glass Ä; Kundt G; Ickstadt K
    Res Synth Methods; 2021 May; 12(3):291-315. PubMed ID: 33264488
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.