These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 30129707)

  • 41. How trace plots help interpret meta-analysis results.
    Röver C; Rindskopf D; Friede T
    Res Synth Methods; 2024 May; 15(3):413-429. PubMed ID: 38100240
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparisons of various estimates of the
    Wang Y; DelRocco N; Lin L
    Stat Methods Med Res; 2024 May; 33(5):745-764. PubMed ID: 38502022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of analysing continuous outcomes using final values, change scores and analysis of covariance on the performance of meta-analytic methods: a simulation study.
    McKenzie JE; Herbison GP; Deeks JJ
    Res Synth Methods; 2016 Dec; 7(4):371-386. PubMed ID: 26715122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accounting for heterogeneity in meta-analysis using a multiplicative model-an empirical study.
    Mawdsley D; Higgins JP; Sutton AJ; Abrams KR
    Res Synth Methods; 2017 Mar; 8(1):43-52. PubMed ID: 27259973
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing meta-regression methods for examining moderator relationships with dependent effect sizes: A Monte Carlo simulation.
    López-López JA; Van den Noortgate W; Tanner-Smith EE; Wilson SJ; Lipsey MW
    Res Synth Methods; 2017 Dec; 8(4):435-450. PubMed ID: 28556477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Frequentist performances of Bayesian prediction intervals for random-effects meta-analysis.
    Hamaguchi Y; Noma H; Nagashima K; Yamada T; Furukawa TA
    Biom J; 2021 Feb; 63(2):394-405. PubMed ID: 33164247
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Univariate and bivariate likelihood-based meta-analysis methods performed comparably when marginal sensitivity and specificity were the targets of inference.
    Dahabreh IJ; Trikalinos TA; Lau J; Schmid CH
    J Clin Epidemiol; 2017 Mar; 83():8-17. PubMed ID: 28063915
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A choice that matters? Smulation study on the impact of direct meta-analysis methods on health economic outcomes.
    Vemer P; Al MJ; Oppe M; Rutten-van Mölken MP
    Pharmacoeconomics; 2013 Aug; 31(8):719-30. PubMed ID: 23736971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Avoiding zero between-study variance estimates in random-effects meta-analysis.
    Chung Y; Rabe-Hesketh S; Choi IH
    Stat Med; 2013 Oct; 32(23):4071-89. PubMed ID: 23670939
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Misunderstandings about Q and 'Cochran's Q test' in meta-analysis.
    Hoaglin DC
    Stat Med; 2016 Feb; 35(4):485-95. PubMed ID: 26303773
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing Heterogeneity in Random-Effects Meta-analysis.
    Langan D
    Methods Mol Biol; 2022; 2345():67-89. PubMed ID: 34550584
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robust meta-analytic conclusions mandate the provision of prediction intervals in meta-analysis summaries.
    Graham PL; Moran JL
    J Clin Epidemiol; 2012 May; 65(5):503-10. PubMed ID: 22265586
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One-stage random effects meta-analysis using linear mixed models for aggregate continuous outcome data.
    Papadimitropoulou K; Stijnen T; Dekkers OM; le Cessie S
    Res Synth Methods; 2019 Sep; 10(3):360-375. PubMed ID: 30523676
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis.
    Rücker G; Schwarzer G; Carpenter JR; Binder H; Schumacher M
    Biostatistics; 2011 Jan; 12(1):122-42. PubMed ID: 20656692
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Trial Sequential Analysis in systematic reviews with meta-analysis.
    Wetterslev J; Jakobsen JC; Gluud C
    BMC Med Res Methodol; 2017 Mar; 17(1):39. PubMed ID: 28264661
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of underlying risk as a source of heterogeneity in meta-analyses: a simulation study of Bayesian and frequentist implementations of three models.
    Dohoo I; Stryhn H; Sanchez J
    Prev Vet Med; 2007 Sep; 81(1-3):38-55. PubMed ID: 17477995
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of Bayesian and frequentist methods in random-effects network meta-analysis of binary data.
    Seide SE; Jensen K; Kieser M
    Res Synth Methods; 2020 May; 11(3):363-378. PubMed ID: 31955519
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of sample size and bias on the reliability of estimates of error: a comparative study of Dahlberg's formula.
    Springate SD
    Eur J Orthod; 2012 Apr; 34(2):158-63. PubMed ID: 21447784
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A double SIMEX approach for bivariate random-effects meta-analysis of diagnostic accuracy studies.
    Guolo A
    BMC Med Res Methodol; 2017 Jan; 17(1):6. PubMed ID: 28077079
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Meta-STEPP with random effects.
    Wang XV; Cole B; Bonetti M; Gelber RD
    Res Synth Methods; 2018 Jun; 9(2):312-317. PubMed ID: 29281174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.