BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30130096)

  • 1. Impact of Pyrene Exposure during Overwintering of the Arctic Copepod Calanus glacialis.
    Toxværd K; Van Dinh K; Henriksen O; Hjorth M; Nielsen TG
    Environ Sci Technol; 2018 Sep; 52(18):10328-10336. PubMed ID: 30130096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed effects of pyrene exposure during overwintering on the Arctic copepod Calanus hyperboreus.
    Toxværd K; Dinh KV; Henriksen O; Hjorth M; Nielsen TG
    Aquat Toxicol; 2019 Dec; 217():105332. PubMed ID: 31698182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating pyrene toxicity on Arctic key copepod species Calanus hyperboreus.
    Nørregaard RD; Nielsen TG; Møller EF; Strand J; Espersen L; Møhl M
    Ecotoxicology; 2014 Mar; 23(2):163-74. PubMed ID: 24337827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ingestion and impact of microplastics on arctic Calanus copepods.
    Rodríguez-Torres R; Almeda R; Kristiansen M; Rist S; Winding MS; Nielsen TG
    Aquat Toxicol; 2020 Nov; 228():105631. PubMed ID: 32992089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pyrene exposure and temperature on early development of two co-existing Arctic copepods.
    Grenvald JC; Nielsen TG; Hjorth M
    Ecotoxicology; 2013 Jan; 22(1):184-98. PubMed ID: 23143803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecotoxicological investigation of the effect of accumulation of PAH and possible impact of dispersant in resting high arctic copepod Calanus hyperboreus.
    Nørregaard RD; Gustavson K; Møller EF; Strand J; Tairova Z; Mosbech A
    Aquat Toxicol; 2015 Oct; 167():1-11. PubMed ID: 26253790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of petrogenic pollutants on North Atlantic and Arctic Calanus copepods: From molecular mechanisms to population impacts.
    Hansen BH; Tarrant AM; Lenz PH; Roncalli V; Almeda R; Broch OJ; Altin D; Tollefsen KE
    Aquat Toxicol; 2024 Feb; 267():106825. PubMed ID: 38176169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda).
    Hansen BH; Altin D; Rørvik SF; Øverjordet IB; Olsen AJ; Nordtug T
    Sci Total Environ; 2011 Jan; 409(4):704-9. PubMed ID: 21130489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of oil spill response technologies on the physiological performance of the Arctic copepod Calanus glacialis.
    Toxværd K; Pančić M; Eide HO; Søreide JE; Lacroix C; Le Floch S; Hjorth M; Nielsen TG
    Aquat Toxicol; 2018 Jun; 199():65-76. PubMed ID: 29614482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccumulation of oil compounds in the high-Arctic copepod Calanus hyperboreus.
    Agersted MD; Møller EF; Gustavson K
    Aquat Toxicol; 2018 Feb; 195():8-14. PubMed ID: 29220691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pyrene on grazing and reproduction of Calanus finmarchicus and Calanus glacialis from Disko Bay, West Greenland.
    Jensen MH; Nielsen TG; Dahllöf I
    Aquat Toxicol; 2008 Apr; 87(2):99-107. PubMed ID: 18291539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pan-Arctic Depth Distribution of Diapausing
    Kvile KØ; Ashjian C; Ji R
    Biol Bull; 2019 Oct; 237(2):76-89. PubMed ID: 31714854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microplastics do not increase bioaccumulation of petroleum hydrocarbons in Arctic zooplankton but trigger feeding suppression under co-exposure conditions.
    Almeda R; Rodriguez-Torres R; Rist S; Winding MHS; Stief P; Hansen BH; Nielsen TG
    Sci Total Environ; 2021 Jan; 751():141264. PubMed ID: 32871308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How including ecological realism impacts the assessment of the environmental effect of oil spills at the population level: The application of matrix models for Arctic Calanus species.
    de Vries P; Tamis J; Hjorth M; Jak R; Falk-Petersen S; van den Heuvel-Greve M; Klok C; Hemerik L
    Mar Environ Res; 2018 Oct; 141():264-274. PubMed ID: 30249456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment.
    Feng Z; Ji R; Ashjian C; Campbell R; Zhang J
    Glob Chang Biol; 2018 Jan; 24(1):e159-e170. PubMed ID: 28869698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute oil exposure reduces physiological process rates in Arctic phyto- and zooplankton.
    Lemcke S; Holding J; Møller EF; Thyrring J; Gustavson K; Juul-Pedersen T; Sejr MK
    Ecotoxicology; 2019 Jan; 28(1):26-36. PubMed ID: 30460435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome responses in copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus exposed to phenanthrene and benzo[a]pyrene.
    Yadetie F; Brun NR; Giebichenstein J; Dmoch K; Hylland K; Borgå K; Karlsen OA; Goksøyr A
    Mar Genomics; 2022 Oct; 65():100981. PubMed ID: 35969942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cumulative Impacts of Oil Pollution, Ocean Warming, and Coastal Freshening on the Feeding of Arctic Copepods.
    Rist S; Rask S; Ntinou IV; Varpe Ø; Lindegren M; Ugwu K; Larsson M; Sjöberg V; Nielsen TG
    Environ Sci Technol; 2024 Feb; ():. PubMed ID: 38321867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin, Arctic Ocean.
    Wang YG; Tseng LC; Lin M; Hwang JS
    PLoS One; 2019; 14(7):e0219319. PubMed ID: 31295285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sea ice decline drives biogeographical shifts of key Calanus species in the central Arctic Ocean.
    Ershova EA; Kosobokova KN; Banas NS; Ellingsen I; Niehoff B; Hildebrandt N; Hirche HJ
    Glob Chang Biol; 2021 May; 27(10):2128-2143. PubMed ID: 33605011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.