These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30130102)

  • 21. QSAR-derived affinity fingerprints (part 2): modeling performance for potency prediction.
    Cortés-Ciriano I; Škuta C; Bender A; Svozil D
    J Cheminform; 2020 Jun; 12(1):41. PubMed ID: 33431016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioactive Molecule Prediction Using Extreme Gradient Boosting.
    Babajide Mustapha I; Saeed F
    Molecules; 2016 Jul; 21(8):. PubMed ID: 27483216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated Inference of Chemical Discriminants of Biological Activity.
    Raschka S; Scott AM; Huertas M; Li W; Kuhn LA
    Methods Mol Biol; 2018; 1762():307-338. PubMed ID: 29594779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring Alternative Strategies for the Identification of Potent Compounds Using Support Vector Machine and Regression Modeling.
    Miyao T; Funatsu K; Bajorath J
    J Chem Inf Model; 2019 Mar; 59(3):983-992. PubMed ID: 30547580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reliable Prediction Errors for Deep Neural Networks Using Test-Time Dropout.
    Cortés-Ciriano I; Bender A
    J Chem Inf Model; 2019 Jul; 59(7):3330-3339. PubMed ID: 31241929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-scale similarity search profiling of ChEMBL compound data sets.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1831-9. PubMed ID: 21728295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benchmarking the Predictive Power of Ligand Efficiency Indices in QSAR.
    Cortes-Ciriano I
    J Chem Inf Model; 2016 Aug; 56(8):1576-87. PubMed ID: 27399907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of Predictive QSAR Models of 4-Thiazolidinones Antitrypanosomal Activity Using Modern Machine Learning Algorithms.
    Kryshchyshyn A; Devinyak O; Kaminskyy D; Grellier P; Lesyk R
    Mol Inform; 2018 May; 37(5):e1700078. PubMed ID: 29134756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PTML Combinatorial Model of ChEMBL Compounds Assays for Multiple Types of Cancer.
    Bediaga H; Arrasate S; González-Díaz H
    ACS Comb Sci; 2018 Nov; 20(11):621-632. PubMed ID: 30240186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Use of Informer Sets in Screening: Perspectives on an Efficient Strategy to Identify New Probes.
    Clemons PA; Bittker JA; Wagner FF; Hands A; Dančík V; Schreiber SL; Choudhary A; Wagner BK
    SLAS Discov; 2021 Aug; 26(7):855-861. PubMed ID: 34130532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving Screening Efficiency through Iterative Screening Using Docking and Conformal Prediction.
    Svensson F; Norinder U; Bender A
    J Chem Inf Model; 2017 Mar; 57(3):439-444. PubMed ID: 28195474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.
    Fang X; Bagui S; Bagui S
    Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. QSAR-assisted virtual screening of lead-like molecules from marine and microbial natural sources for antitumor and antibiotic drug discovery.
    Pereira F; Latino DA; Gaudêncio SP
    Molecules; 2015 Mar; 20(3):4848-73. PubMed ID: 25789820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A New Approach for Drug Target and Bioactivity Prediction: The Multifingerprint Similarity Search Algorithm (MuSSeL).
    Alberga D; Trisciuzzi D; Montaruli M; Leonetti F; Mangiatordi GF; Nicolotti O
    J Chem Inf Model; 2019 Jan; 59(1):586-596. PubMed ID: 30485097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How to Achieve Better Results Using PASS-Based Virtual Screening: Case Study for Kinase Inhibitors.
    Pogodin PV; Lagunin AA; Rudik AV; Filimonov DA; Druzhilovskiy DS; Nicklaus MC; Poroikov VV
    Front Chem; 2018; 6():133. PubMed ID: 29755970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning assisted design of highly active peptides for drug discovery.
    Giguère S; Laviolette F; Marchand M; Tremblay D; Moineau S; Liang X; Biron É; Corbeil J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004074. PubMed ID: 25849257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Profile-QSAR 2.0: Kinase Virtual Screening Accuracy Comparable to Four-Concentration IC
    Martin EJ; Polyakov VR; Tian L; Perez RC
    J Chem Inf Model; 2017 Aug; 57(8):2077-2088. PubMed ID: 28651433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.