These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 30130117)
1. Revealing the Rate-Limiting Li-Ion Diffusion Pathway in Ultrathick Electrodes for Li-Ion Batteries. Gao H; Wu Q; Hu Y; Zheng JP; Amine K; Chen Z J Phys Chem Lett; 2018 Sep; 9(17):5100-5104. PubMed ID: 30130117 [TBL] [Abstract][Full Text] [Related]
2. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. Ye J; Baumgaertel AC; Wang YM; Biener J; Biener MM ACS Nano; 2015 Feb; 9(2):2194-202. PubMed ID: 25491650 [TBL] [Abstract][Full Text] [Related]
3. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
4. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
5. Promoting Transport Kinetics in Li-Ion Battery with Aligned Porous Electrode Architectures. Zhang X; Ju Z; Housel LM; Wang L; Zhu Y; Singh G; Sadique N; Takeuchi KJ; Takeuchi ES; Marschilok AC; Yu G Nano Lett; 2019 Nov; 19(11):8255-8261. PubMed ID: 31661622 [TBL] [Abstract][Full Text] [Related]
6. Bicontinuous phase separation of lithium-ion battery electrodes for ultrahigh areal loading. Lee JT; Jo C; De Volder M Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21155-21161. PubMed ID: 32817417 [TBL] [Abstract][Full Text] [Related]
7. Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. Wang J; Sun Q; Gao X; Wang C; Li W; Holness FB; Zheng M; Li R; Price AD; Sun X; Sham TK; Sun X ACS Appl Mater Interfaces; 2018 Nov; 10(46):39794-39801. PubMed ID: 30372018 [TBL] [Abstract][Full Text] [Related]
8. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Zhu Y; Xu Y; Liu Y; Luo C; Wang C Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803 [TBL] [Abstract][Full Text] [Related]
9. A New Aspect of the Li Diffusion Enhancement Mechanism of Ultrathin Coating Layer on Electrode Materials. Zhu Y; Pham H; Park J ACS Appl Mater Interfaces; 2019 Oct; 11(42):38719-38726. PubMed ID: 31535839 [TBL] [Abstract][Full Text] [Related]
10. Optimization of the Electrode Properties for High-Performance Ni-Rich Li-Ion Batteries. Sarawutanukul S; Tomon C; Phattharasupakun N; Duangdangchote S; Duriyasart F; Chiochan P; Sawangphruk M ACS Appl Mater Interfaces; 2021 Jul; 13(26):30643-30652. PubMed ID: 34180222 [TBL] [Abstract][Full Text] [Related]
11. Effects of Electrode Thickness on Three-Dimensional NiCrAl Metal Foam Cathode for Lithium Ion Battery. Song KY; Jang GS; Tao J; Lee JH; Joo SK J Nanosci Nanotechnol; 2018 Feb; 18(2):992-998. PubMed ID: 29448524 [TBL] [Abstract][Full Text] [Related]
12. Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes. Zhang X; Hui Z; King S; Wang L; Ju Z; Wu J; Takeuchi KJ; Marschilok AC; West AC; Takeuchi ES; Yu G Nano Lett; 2021 Jul; 21(13):5896-5904. PubMed ID: 34197125 [TBL] [Abstract][Full Text] [Related]
13. Porous Cu Film Enables Thick Slurry-Cast Anodes with Enhanced Charge Transfer Efficiency for High-Performance Li-Ion Batteries. Ren Z; Huang L; Lin Z; Mu Y; Ji X; Zeng J; Yu J ACS Appl Mater Interfaces; 2020 Oct; 12(42):47623-47633. PubMed ID: 33047606 [TBL] [Abstract][Full Text] [Related]
14. Sub-Thick Electrodes with Enhanced Transport Kinetics via In Situ Epitaxial Heterogeneous Interfaces for High Areal-Capacity Lithium Ion Batteries. Zhou S; Huang P; Xiong T; Yang F; Yang H; Huang Y; Li D; Deng J; Balogun MJT Small; 2021 Jul; 17(26):e2100778. PubMed ID: 34060232 [TBL] [Abstract][Full Text] [Related]
15. A High Capacity Gas Diffusion Electrode for Li-O Jenkins M; Dewar D; Lagnoni M; Yang S; Rees GJ; Bertei A; Johnson LR; Gao X; Bruce PG Adv Mater; 2024 Oct; 36(41):e2405715. PubMed ID: 39101286 [TBL] [Abstract][Full Text] [Related]
16. Atomistic Insights into FeF Yang Z; Zhao S; Pan Y; Wang X; Liu H; Wang Q; Zhang Z; Deng B; Guo C; Shi X ACS Appl Mater Interfaces; 2018 Jan; 10(3):3142-3151. PubMed ID: 29286642 [TBL] [Abstract][Full Text] [Related]
17. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes. Croy JR; Balasubramanian M; Gallagher KG; Burrell AK Acc Chem Res; 2015 Nov; 48(11):2813-21. PubMed ID: 26451674 [TBL] [Abstract][Full Text] [Related]
18. High Pseudocapacitance in FeOOH/rGO Composites with Superior Performance for High Rate Anode in Li-Ion Battery. Qi H; Cao L; Li J; Huang J; Xu Z; Cheng Y; Kong X; Yanagisawa K ACS Appl Mater Interfaces; 2016 Dec; 8(51):35253-35263. PubMed ID: 27977130 [TBL] [Abstract][Full Text] [Related]
19. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries. Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465 [TBL] [Abstract][Full Text] [Related]
20. Three-Dimensionally Porous Li-Ion and Li-S Battery Cathodes: A Mini Review for Preparation Methods and Energy-Storage Performance. Liu J; Long J; Du S; Sun B; Zhu S; Li J Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30875978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]