These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 30130184)

  • 41. Autoregressive Signal Processing Applied to High-Frequency Acoustic Microscopy of Soft Tissues.
    Rohrbach D; Mamou J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2054-2072. PubMed ID: 30222559
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of acoustic cavitation energy in a large-scale sonoreactor.
    Son Y; Lim M; Khim J
    Ultrason Sonochem; 2009 Apr; 16(4):552-6. PubMed ID: 19144557
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound.
    Johansen K; Song JH; Prentice P
    Ultrason Sonochem; 2018 May; 43():146-155. PubMed ID: 29555269
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative Frequency-Domain Passive Cavitation Imaging.
    Haworth KJ; Bader KB; Rich KT; Holland CK; Mast TD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):177-191. PubMed ID: 27992331
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of frequency-dependent attenuation and dispersion on sound speed measurements: applications in human trabecular bone.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):265-73. PubMed ID: 18238539
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Passive spatial mapping of inertial cavitation during HIFU exposure.
    Gyöngy M; Coussios CC
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):48-56. PubMed ID: 19628450
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acoustic attenuation imaging of tissue bulk properties with a priori information.
    Hooi FM; Kripfgans O; Carson PL
    J Acoust Soc Am; 2016 Sep; 140(3):2113. PubMed ID: 27914403
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of Frequency-Dependent Attenuation on Predicted Histotripsy Waveforms in Tissue-Mimicking Phantoms.
    Bader KB; Crowe MJ; Raymond JL; Holland CK
    Ultrasound Med Biol; 2016 Jul; 42(7):1701-5. PubMed ID: 27108036
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hybrid spectral domain method for attenuation slope estimation.
    Kim H; Varghese T
    Ultrasound Med Biol; 2008 Nov; 34(11):1808-19. PubMed ID: 18621468
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Passive acoustic mapping utilizing optimal beamforming in ultrasound therapy monitoring.
    Coviello C; Kozick R; Choi J; Gyöngy M; Jensen C; Smith PP; Coussios CC
    J Acoust Soc Am; 2015 May; 137(5):2573-85. PubMed ID: 25994690
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lower Bound on Estimation Variance of the Ultrasonic Attenuation Coefficient Using the Spectral-Difference Reference-phantom Method.
    Samimi K; Varghese T
    Ultrason Imaging; 2017 May; 39(3):151-171. PubMed ID: 28425388
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of pulse duration and pulse repetition frequency of cavitation histotripsy on erosion at the surface of soft material.
    Zhou Y; Wang X
    Ultrasonics; 2018 Mar; 84():296-309. PubMed ID: 29182946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of the Uncertainty of Passive Cavitation Measurements for Blood-Brain Barrier Disruption Monitoring.
    Asquier N; Chapelon JY; Lafon C
    Ultrasound Med Biol; 2020 Oct; 46(10):2736-2743. PubMed ID: 32653206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device.
    Crake C; Brinker ST; Coviello CM; Livingstone MS; McDannold NJ
    Phys Med Biol; 2018 Mar; 63(6):065008. PubMed ID: 29459494
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-invasive and real-time passive acoustic mapping of ultrasound-mediated drug delivery.
    Choi JJ; Carlisle RC; Coviello C; Seymour L; Coussios CC
    Phys Med Biol; 2014 Sep; 59(17):4861-77. PubMed ID: 25098262
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.
    Zhou Y; Gao XW
    J Acoust Soc Am; 2013 Aug; 134(2):1683-94. PubMed ID: 23927209
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The direct estimation of sound speed using pulse-echo ultrasound.
    Anderson ME; Trahey GE
    J Acoust Soc Am; 1998 Nov; 104(5):3099-106. PubMed ID: 9821351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Attenuation estimation by repeatedly solving the forward scattering problem.
    Ilyina N; Hermans J; Verboven E; Van Den Abeele K; D'Agostino E; D'hooge J
    Ultrasonics; 2018 Mar; 84():201-209. PubMed ID: 29156300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Attenuation compensation in 99mTc SPECT brain imaging: a comparison of the use of attenuation maps derived from transmission versus emission data in normal scans.
    Licho R; Glick SJ; Xia W; Pan TS; Penney BC; King MA
    J Nucl Med; 1999 Mar; 40(3):456-63. PubMed ID: 10086711
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.
    Haworth KJ; Raymond JL; Radhakrishnan K; Moody MR; Huang SL; Peng T; Shekhar H; Klegerman ME; Kim H; McPherson DD; Holland CK
    Ultrasound Med Biol; 2016 Feb; 42(2):518-27. PubMed ID: 26547633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.