BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30130198)

  • 1. GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation.
    Kahng M; Thorat N; Chau DHP; Viegas FB; Wattenberg M
    IEEE Trans Vis Comput Graph; 2018 Aug; ():. PubMed ID: 30130198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization.
    Wang ZJ; Turko R; Shaikh O; Park H; Das N; Hohman F; Kahng M; Polo Chau DH
    IEEE Trans Vis Comput Graph; 2021 Feb; 27(2):1396-1406. PubMed ID: 33048723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GANViz: A Visual Analytics Approach to Understand the Adversarial Game.
    Wang J; Gou L; Yang H; Shen HW
    IEEE Trans Vis Comput Graph; 2018 Jun; 24(6):1905-1917. PubMed ID: 29723140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HOT-GAN: Hilbert Optimal Transport for Generative Adversarial Network.
    Li Q; Wang Z; Xia H; Li G; Cao Y; Yao L; Xu G
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; PP():. PubMed ID: 38833390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models.
    Carrillo-Perez F; Pizurica M; Ozawa MG; Vogel H; West RB; Kong CS; Herrera LJ; Shen J; Gevaert O
    Cell Rep Methods; 2023 Aug; 3(8):100534. PubMed ID: 37671024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of Using Generative Adversarial Networks for Glaucoma Detection: Systematic Review and Bibliometric Analysis.
    Saeed AQ; Sheikh Abdullah SNH; Che-Hamzah J; Abdul Ghani AT
    J Med Internet Res; 2021 Sep; 23(9):e27414. PubMed ID: 34236992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.
    Ali H; Shah Z
    JMIR Med Inform; 2022 Jun; 10(6):e37365. PubMed ID: 35709336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative Adversarial Networks in Medical Image Processing.
    Gong M; Chen S; Chen Q; Zeng Y; Zhang Y
    Curr Pharm Des; 2021; 27(15):1856-1868. PubMed ID: 33238866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images.
    Motamed S; Rogalla P; Khalvati F
    Inform Med Unlocked; 2021; 27():100779. PubMed ID: 34841040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Adversarial Networks Improve the Reproducibility and Discriminative Power of Radiomic Features.
    Marcadent S; Hofmeister J; Preti MG; Martin SP; Van De Ville D; Montet X
    Radiol Artif Intell; 2020 May; 2(3):e190035. PubMed ID: 33937823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of generative adversarial networks in neuroimaging and clinical neuroscience.
    Wang R; Bashyam V; Yang Z; Yu F; Tassopoulou V; Chintapalli SS; Skampardoni I; Sreepada LP; Sahoo D; Nikita K; Abdulkadir A; Wen J; Davatzikos C
    Neuroimage; 2023 Apr; 269():119898. PubMed ID: 36702211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MB-GAN: Microbiome Simulation via Generative Adversarial Network.
    Rong R; Jiang S; Xu L; Xiao G; Xie Y; Liu DJ; Li Q; Zhan X
    Gigascience; 2021 Feb; 10(2):. PubMed ID: 33543271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic Performance of Generative Adversarial Network-Based Deep Learning Methods for Alzheimer's Disease: A Systematic Review and Meta-Analysis.
    Qu C; Zou Y; Ma Y; Chen Q; Luo J; Fan H; Jia Z; Gong Q; Chen T
    Front Aging Neurosci; 2022; 14():841696. PubMed ID: 35527734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generative Adversarial Learning of Protein Tertiary Structures.
    Rahman T; Du Y; Zhao L; Shehu A
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33668217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Performance of Generative Adversarial Network by Limiting Mode Collapse for Malware Detection Systems.
    Murray A; Rawat DB
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of GAN-Based Model for Adversarial Training.
    Zhao W; Mahmoud QH; Alwidian S
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904900
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.