These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30130232)

  • 61. The Relationship Between Objectively Measured Walking and Risk of Pedestrian-Motor Vehicle Collision.
    Quistberg DA; Howard EJ; Hurvitz PM; Moudon AV; Ebel BE; Rivara FP; Saelens BE
    Am J Epidemiol; 2017 May; 185(9):810-821. PubMed ID: 28338921
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Walking the talk: Comparing pedestrian 'activity as imagined' with 'activity as done'.
    Read GJM; Stevens EL; Lenné MG; Stanton NA; Walker GH; Salmon PM
    Accid Anal Prev; 2018 Apr; 113():74-84. PubMed ID: 29407671
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Traffic and Environmental Cues and Slow-Down Behaviors in Virtual Driving.
    Hsu CC; Chuang KH
    Percept Mot Skills; 2016 Feb; 122(1):101-22. PubMed ID: 27420310
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Strategies for obstacle avoidance during walking in the cat.
    Chu KMI; Seto SH; Beloozerova IN; Marlinski V
    J Neurophysiol; 2017 Aug; 118(2):817-831. PubMed ID: 28356468
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Manipulating perception versus action in recalibration tasks.
    Ziemer CJ; Branson MJ; Chihak BJ; Kearney JK; Cremer JF; Plumert JM
    Atten Percept Psychophys; 2013 Aug; 75(6):1260-74. PubMed ID: 23715972
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Review of safety and mobility issues among older pedestrians.
    Tournier I; Dommes A; Cavallo V
    Accid Anal Prev; 2016 Jun; 91():24-35. PubMed ID: 26950033
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The circumvention of obstacles during walking in different environmental contexts: a comparison between older and younger adults.
    Gérin-Lajoie M; Richards CL; McFadyen BJ
    Gait Posture; 2006 Nov; 24(3):364-9. PubMed ID: 16337384
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Aging affects the ability to use optic flow in the control of heading during locomotion.
    Berard JR; Fung J; McFadyen BJ; Lamontagne A
    Exp Brain Res; 2009 Apr; 194(2):183-90. PubMed ID: 19139863
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Locomotor rehabilitation in a complex virtual environment.
    Fung J; Malouin F; McFadyen BJ; Comeau F; Lamontagne A; Chapdelaine S; Beaudoin C; Laurendeau D; Hughey L; Richards CL
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4859-61. PubMed ID: 17271400
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Examining how different measurement approaches impact safety outcomes in child pedestrian research: Implications for research and prevention.
    Corbett MR; Morrongiello BA
    Accid Anal Prev; 2017 Sep; 106():297-304. PubMed ID: 28667894
    [TBL] [Abstract][Full Text] [Related]  

  • 71. How do children learn to cross the street? The process of pedestrian safety training.
    Schwebel DC; Shen J; McClure LA
    Traffic Inj Prev; 2016 Aug; 17(6):573-9. PubMed ID: 26760077
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Gait Pattern Alterations during Walking, Texting and Walking and Texting during Cognitively Distractive Tasks while Negotiating Common Pedestrian Obstacles.
    Licence S; Smith R; McGuigan MP; Earnest CP
    PLoS One; 2015; 10(7):e0133281. PubMed ID: 26222430
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sensory Recalibration from Visually Amplified Rotations While Walking.
    Johnson T; Nandakumar N; Kenyon R; Patton J
    Crit Rev Biomed Eng; 2015; 43(4):245-53. PubMed ID: 27480458
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of Traffic Noise and Relaxations Sounds on Pedestrian Walking Speed.
    Franěk M; Režný L; Šefara D; Cabal J
    Int J Environ Res Public Health; 2018 Apr; 15(4):. PubMed ID: 29661990
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Locomotive Recalibration and Prism Adaptation of Children and Teens in Immersive Virtual Environments.
    Adams H; Narasimham G; Rieser J; Creem-Regehr S; Stefanucci J; Bodenheimer B
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1408-1417. PubMed ID: 29543159
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A virtual test system representing the distribution of pedestrian impact configurations for future vehicle front-end optimization.
    Li G; Yang J; Simms C
    Traffic Inj Prev; 2016 Jul; 17(5):515-23. PubMed ID: 26786188
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Gait speed influences aftereffect size following locomotor adaptation, but only in certain environments.
    Hamzey RJ; Kirk EM; Vasudevan EV
    Exp Brain Res; 2016 Jun; 234(6):1479-90. PubMed ID: 26790424
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hazard perception test for pedestrians.
    Rosenbloom T; Mandel R; Rosner Y; Eldror E
    Accid Anal Prev; 2015 Jun; 79():160-9. PubMed ID: 25838190
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Modulation of walking speed by changing optic flow in persons with stroke.
    Lamontagne A; Fung J; McFadyen BJ; Faubert J
    J Neuroeng Rehabil; 2007 Jun; 4():22. PubMed ID: 17594501
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optic flow drives human visuo-locomotor adaptation.
    Bruggeman H; Zosh W; Warren WH
    Curr Biol; 2007 Dec; 17(23):2035-40. PubMed ID: 18023350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.