These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 30130538)
41. Field experiments on persistence of Culicinomyces clavisporus. Allen GR; Sweeney AW J Am Mosq Control Assoc; 1986 Sep; 2(3):368-71. PubMed ID: 3507515 [No Abstract] [Full Text] [Related]
42. Effect of ten chlorophytes on larval survival, development and adult body size of the mosquito Aedes aegypti. Ahmad R; Chu WL; Ismail Z; Lee HL; Phang SM Southeast Asian J Trop Med Public Health; 2004 Mar; 35(1):79-87. PubMed ID: 15272748 [TBL] [Abstract][Full Text] [Related]
43. Neem oil increases the persistence of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae. Paula AR; Ribeiro A; Lemos FJA; Silva CP; Samuels RI Parasit Vectors; 2019 Apr; 12(1):163. PubMed ID: 30975207 [TBL] [Abstract][Full Text] [Related]
44. Larvicidal activity of the entomopathogenic fungus Tolypocladium cylindrosporum (Deuteromycotina: Hyphomycetes) on the mosquito Aedes triseriatus and the black fly Simulium vittatum (Diptera: Simuliidae). Nadeau MP; Boisvert JL J Am Mosq Control Assoc; 1994 Dec; 10(4):487-91. PubMed ID: 7707051 [TBL] [Abstract][Full Text] [Related]
45. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae). da Silva OS; Prado GR; da Silva JL; Silva CE; da Costa M; Heermann R Parasitol Res; 2013 Aug; 112(8):2891-6. PubMed ID: 23728731 [TBL] [Abstract][Full Text] [Related]
46. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Muthukumaran U; Govindarajan M; Rajeswary M Parasitol Res; 2015 Mar; 114(3):989-99. PubMed ID: 25544703 [TBL] [Abstract][Full Text] [Related]
47. [Predatory capacity of Macrobrachium tenellum on Aedes aegypti larvae in lab conditions]. Rojas-Sahagún CC; Hernández-Sánchez JM; Vargas-Ceballos MA; Ruiz-González LE; Espinosa-Chaurand LD; Nolasco-Soria H; Vega-Villasante F Rev Cubana Med Trop; 2012; 64(3):315-23. PubMed ID: 23424807 [TBL] [Abstract][Full Text] [Related]
48. Spinosad as an effective larvicide for control of Aedes albopictus and Aedes aegypti, vectors of dengue in southern Mexico. Marina CF; Bond JG; Casas M; Muñoz J; Orozco A; Valle J; Williams T Pest Manag Sci; 2011 Jan; 67(1):114-21. PubMed ID: 21162151 [TBL] [Abstract][Full Text] [Related]
49. The use of dragonfly nymphs in the control of Aedes aegypti. Sebastian A; Thu MM; Kyaw M; Sein MM Southeast Asian J Trop Med Public Health; 1980 Mar; 11(1):104-7. PubMed ID: 6447358 [TBL] [Abstract][Full Text] [Related]
50. The influence of larval density, food stress, and parasitism on the bionomics of the dengue vector Aedes aegypti (Diptera: Culicidae): implications for integrated vector management. Mitchell-Foster K; Ma BO; Warsame-Ali S; Logan C; Rau ME; Lowenberger C J Vector Ecol; 2012 Jun; 37(1):221-9. PubMed ID: 22548557 [TBL] [Abstract][Full Text] [Related]
51. Exposure of newly deposited Aedes aegypti eggs to Metarhizium humberi and fungal development on the eggs. Sousa NA; Rodrigues J; Luz C; Humber RA J Invertebr Pathol; 2023 Mar; 197():107898. PubMed ID: 36806464 [TBL] [Abstract][Full Text] [Related]
52. Pathogenicity of Beauveria bassiana, Metarhizium anisopliae (Deuteromycotina: Hyphomycetes), and other entomopathogenic fungi against Lygus lineolaris (Hemiptera: Miridae). Liu H; Skinner M; Parker BL; Brownbridge M J Econ Entomol; 2002 Aug; 95(4):675-81. PubMed ID: 12216806 [TBL] [Abstract][Full Text] [Related]
53. The compatibility of methoprene with the mosquito fungus Culicinomyces clavisporus. Allen GR; Sweeney AW J Am Mosq Control Assoc; 1985 Jun; 1(2):243-5. PubMed ID: 2906668 [No Abstract] [Full Text] [Related]
54. Predatory potential of Nepa cinerea against mosquito larvae in laboratory conditions. Singh RK; Singh SP J Commun Dis; 2004 Jun; 36(2):105-10. PubMed ID: 16295671 [TBL] [Abstract][Full Text] [Related]
55. Isolation and growth inhibition potential of entomopathogenic nematodes against three public health important mosquito vectors. Dilipkumar A; Raja Ramalingam K; Chinnaperumal K; Govindasamy B; Paramasivam D; Dhayalan A; Pachiappan P Exp Parasitol; 2019 Feb; 197():76-84. PubMed ID: 30414843 [TBL] [Abstract][Full Text] [Related]
56. Laboratory studies on the predatory potential of dragon-fly nymphs on mosquito larvae. Singh RK; Dhiman RC; Singh SP J Commun Dis; 2003 Jun; 35(2):96-101. PubMed ID: 15562955 [TBL] [Abstract][Full Text] [Related]
57. Mosquito larval consumption of toxic arborescent leaf-litter, and its biocontrol potential. David JP; Tilquin M; Rey D; Ravanel P; Meyran JC Med Vet Entomol; 2003 Jun; 17(2):151-7. PubMed ID: 12823832 [TBL] [Abstract][Full Text] [Related]
58. Efficacy of water- and oil-in-water-formulated Metarhizium anisopliae in Rhipicephalus sanguineus eggs and eclosing larvae. Luz C; D'Alessandro WB; Rodrigues J; Fernandes ÉK Parasitol Res; 2016 Jan; 115(1):143-9. PubMed ID: 26364059 [TBL] [Abstract][Full Text] [Related]
59. Behavioural alterations in female Aedes aegypti mosquito in response to entomopathogenic fungal infections. Mehmood N; Hassan A; Zhou W; Usman HM; Ai H; Huang Q Pest Manag Sci; 2022 May; 78(5):2065-2073. PubMed ID: 35137527 [TBL] [Abstract][Full Text] [Related]
60. Effects of Toxorhynchites moctezuma larval predation on Aedes aegypti populations: experimental evaluation. Tikasingh ES Med Vet Entomol; 1992 Jul; 6(3):266-71. PubMed ID: 1358268 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]