These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The zebrafish: scalable in vivo modeling for systems biology. Deo RC; MacRae CA Wiley Interdiscip Rev Syst Biol Med; 2011; 3(3):335-46. PubMed ID: 20882534 [TBL] [Abstract][Full Text] [Related]
6. Phenomics: the systematic study of phenotypes on a genome-wide scale. Bilder RM; Sabb FW; Cannon TD; London ED; Jentsch JD; Parker DS; Poldrack RA; Evans C; Freimer NB Neuroscience; 2009 Nov; 164(1):30-42. PubMed ID: 19344640 [TBL] [Abstract][Full Text] [Related]
7. Development, Preparation, and Curation of High-Throughput Phenotypic Data for Genome-Wide Association Studies: A Sample Pipeline in R. Tripodi P Methods Mol Biol; 2022; 2481():105-125. PubMed ID: 35641761 [TBL] [Abstract][Full Text] [Related]
8. Genome-Phenome Wide Association in Maize and Arabidopsis Identifies a Common Molecular and Evolutionary Signature. Liang Z; Qiu Y; Schnable JC Mol Plant; 2020 Jun; 13(6):907-922. PubMed ID: 32171733 [TBL] [Abstract][Full Text] [Related]
9. Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish. Doelken SC; Köhler S; Mungall CJ; Gkoutos GV; Ruef BJ; Smith C; Smedley D; Bauer S; Klopocki E; Schofield PN; Westerfield M; Robinson PN; Lewis SE Dis Model Mech; 2013 Mar; 6(2):358-72. PubMed ID: 23104991 [TBL] [Abstract][Full Text] [Related]
10. Using zebrafish to study skeletal genomics. Kwon RY; Watson CJ; Karasik D Bone; 2019 Sep; 126():37-50. PubMed ID: 30763636 [TBL] [Abstract][Full Text] [Related]
11. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease. Varshney GK; Burgess SM Brief Funct Genomics; 2014 Mar; 13(2):82-94. PubMed ID: 24162064 [TBL] [Abstract][Full Text] [Related]
12. Phenomics as an approach to Comparative Developmental Physiology. McCoy JCS; Spicer JI; Ibbini Z; Tills O Front Physiol; 2023; 14():1229500. PubMed ID: 37645563 [TBL] [Abstract][Full Text] [Related]
13. Functional genomics tools for the analysis of zebrafish pigment. Pickart MA; Sivasubbu S; Nielsen AL; Shriram S; King RA; Ekker SC Pigment Cell Res; 2004 Oct; 17(5):461-70. PubMed ID: 15357832 [TBL] [Abstract][Full Text] [Related]
14. Multi-allelic phenotyping--a systematic approach for the simultaneous analysis of multiple induced mutations. Dooley CM; Scahill C; Fényes F; Kettleborough RN; Stemple DL; Busch-Nentwich EM Methods; 2013 Aug; 62(3):197-206. PubMed ID: 23624102 [TBL] [Abstract][Full Text] [Related]
15. High-throughput phenotyping for crop improvement in the genomics era. Mir RR; Reynolds M; Pinto F; Khan MA; Bhat MA Plant Sci; 2019 May; 282():60-72. PubMed ID: 31003612 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional Regulation During Zygotic Genome Activation in Zebrafish and Other Anamniote Embryos. Wragg J; Müller F Adv Genet; 2016; 95():161-94. PubMed ID: 27503357 [TBL] [Abstract][Full Text] [Related]
17. Phenomics approaches to understand genetic networks and gene function in yeast. Yeung CHL; Sahin N; Andrews B Biochem Soc Trans; 2022 Apr; 50(2):713-721. PubMed ID: 35285506 [TBL] [Abstract][Full Text] [Related]
19. Phenomics enables measurement of complex responses of developing animals to global environmental drivers. Tills O; Holmes LA; Quinn E; Everett T; Truebano M; Spicer JI Sci Total Environ; 2023 Feb; 858(Pt 2):159555. PubMed ID: 36283519 [TBL] [Abstract][Full Text] [Related]
20. Postembryonic screen for mutations affecting spine development in zebrafish. Gray RS; Gonzalez R; Ackerman SD; Minowa R; Griest JF; Bayrak MN; Troutwine B; Canter S; Monk KR; Sepich DS; Solnica-Krezel L Dev Biol; 2021 Mar; 471():18-33. PubMed ID: 33290818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]