BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 30130877)

  • 1. Enabling user mobility for optical camera communication using mobile phone.
    Shi J; He J; He J; Jiang Z; Zhou Y; Xiao Y
    Opt Express; 2018 Aug; 26(17):21762-21767. PubMed ID: 30130877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward user mobility for OFDM-based visible light communications.
    Hong Y; Chen LK
    Opt Lett; 2016 Aug; 41(16):3763-6. PubMed ID: 27519083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding scheme based on CNN for mobile optical camera communication.
    Yu K; He J; Huang Z
    Appl Opt; 2020 Aug; 59(23):7109-7113. PubMed ID: 32788807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective interference mitigation scheme for multi-LED-based mobile optical camera communication.
    Yang Y; He J; Zhou B
    Appl Opt; 2021 Dec; 60(35):10928-10934. PubMed ID: 35200855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical camera communication for mobile payments using an LED panel light.
    Chen HW; Wen SS; Liu Y; Fu M; Weng ZC; Zhang M
    Appl Opt; 2018 Jul; 57(19):5288-5294. PubMed ID: 30117816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of long-distance hazard-free wearable EEG monitoring system using mobile phone visible light communication.
    Rachim VP; Jiang Y; Lee HS; Chung WY
    Opt Express; 2017 Jan; 25(2):713-719. PubMed ID: 28157960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long distance non-line-of-sight (NLOS) visible light signal detection based on rolling-shutter-patterning of mobile-phone camera.
    Wang WC; Chow CW; Wei LY; Liu Y; Yeh CH
    Opt Express; 2017 May; 25(9):10103-10108. PubMed ID: 28468385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental demonstration of indoor uplink near-infrared LED camera communication.
    Cahyadi WA; Chung YH
    Opt Express; 2018 Jul; 26(15):19657-19664. PubMed ID: 30114136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible light communication using mobile-phone camera with data rate higher than frame rate.
    Chow CW; Chen CY; Chen SH
    Opt Express; 2015 Oct; 23(20):26080-5. PubMed ID: 26480122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobile-phone based visible light communication using region-grow light source tracking for unstable light source.
    Liang K; Chow CW; Liu Y
    Opt Express; 2016 Jul; 24(15):17505-10. PubMed ID: 27464196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera.
    Shi J; He J; He J; Deng R; Wei Y; Long F; Cheng Y; Chen L
    Opt Express; 2017 Jul; 25(14):15905-15912. PubMed ID: 28789101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Object recognition in optical camera communication enabled by image restoration.
    Guo M; Zhang P; Sun Y; Zhang W; Zhou Y; Yang Y
    Opt Express; 2022 Sep; 30(20):37026-37037. PubMed ID: 36258621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quadrichromatic LED based mobile phone camera visible light communication.
    Chen H; Lai XZ; Chen P; Liu YT; Yu MY; Liu ZH; Zhu ZJ
    Opt Express; 2018 Jun; 26(13):17132-17144. PubMed ID: 30119529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RGB visible light communication using mobile-phone camera and multi-input multi-output.
    Liang K; Chow CW; Liu Y
    Opt Express; 2016 May; 24(9):9383-8. PubMed ID: 27137554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the performance of optical camera communication via accumulative sampling.
    Zhang P; Wang Q; Yang Y; Wang Y; Sun Y; Xu W; Luo J; Chen L
    Opt Express; 2021 Jun; 29(12):19015-19023. PubMed ID: 34154144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Implementation of a 2D MIMO OCC System Based on Deep Learning.
    Sitanggang OS; Nguyen VL; Nguyen H; Pamungkas RF; Faridh MM; Jang YM
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Characterization of Close-Emitter Interference in an Optical Camera Communication System.
    Chavez-Burbano P; Guerra V; Rabadan J; Rodríguez-Esparragón D; Perez-Jimenez R
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28677613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and implementation of a real-time CIM-MIMO optical camera communication system.
    Huang W; Tian P; Xu Z
    Opt Express; 2016 Oct; 24(21):24567-24579. PubMed ID: 27828183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient demodulation scheme based on adaptive clock extraction and mapping-sampling for a mobile OCC system.
    Huang Z; He J; Yu K; Li W
    Appl Opt; 2021 Apr; 60(12):3308-3313. PubMed ID: 33983233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a vehicle's mobility on SNR and SINR in vehicular optical camera communication systems.
    Eghbal M; Tabataba FS; Gholami A; Abouei J; Uysal M
    Opt Express; 2024 Mar; 32(7):12257-12275. PubMed ID: 38571054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.