These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30130944)

  • 1. Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer.
    Hong Q; Xiong F; Xu W; Zhu Z; Liu K; Yuan X; Zhang J; Qin S
    Opt Express; 2018 Aug; 26(17):22528-22535. PubMed ID: 30130944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.
    Liu Z; Aydin K
    Nano Lett; 2016 Jun; 16(6):3457-62. PubMed ID: 27152653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic infrared plasmonic broadband absorber based on graphene-black phosphorus multilayers.
    Cai Y; Xu KD; Feng N; Guo R; Lin H; Zhu J
    Opt Express; 2019 Feb; 27(3):3101-3112. PubMed ID: 30732336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable and Anisotropic Dual-Band Metamaterial Absorber Using Elliptical Graphene-Black Phosphorus Pairs.
    Cai Y; Li S; Zhou Y; Wang X; Xu KD; Guo R; Joines WT
    Nanoscale Res Lett; 2019 Nov; 14(1):346. PubMed ID: 31754903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extrinsic polarization-controlled optical anisotropy in plasmon-black phosphorus coupled system.
    Liu Z; Wells SA; Butun S; Palacios E; Hersam MC; Aydin K
    Nanotechnology; 2018 Jul; 29(28):285202. PubMed ID: 29671407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons.
    Nong J; Wei W; Wang W; Lan G; Shang Z; Yi J; Tang L
    Opt Express; 2018 Jan; 26(2):1633-1644. PubMed ID: 29402035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies.
    Qing YM; Ma HF; Cui TJ
    Opt Express; 2018 Dec; 26(25):32442-32450. PubMed ID: 30645411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable and anisotropic perfect absorber using graphene-black phosphorus nanoblock.
    Xiao G; Lin Z; Yang H; Xu Y; Zhou S; Li H; Liu X; Wangyang P
    Opt Express; 2022 Jun; 30(13):23198-23207. PubMed ID: 36225005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-based hybrid films for plasmonic sensing.
    Zhao Y; Zhu Y
    Nanoscale; 2015 Sep; 7(35):14561-76. PubMed ID: 26282552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Black phosphorus-based anisotropic absorption structure in the mid-infrared.
    Liu T; Jiang X; Zhou C; Xiao S
    Opt Express; 2019 Sep; 27(20):27618-27627. PubMed ID: 31684526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscopy reveals surface-metallic black phosphorus.
    Abate Y; Gamage S; Li Z; Babicheva V; Javani MH; Wang H; Cronin SB; Stockman MI
    Light Sci Appl; 2016 Oct; 5(10):e16162. PubMed ID: 30167125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering.
    Zhang J; Zhu Z; Liu W; Yuan X; Qin S
    Nanoscale; 2015 Aug; 7(32):13530-6. PubMed ID: 26201255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonics with two-dimensional semiconductors: from basic research to technological applications.
    Agarwal A; Vitiello MS; Viti L; Cupolillo A; Politano A
    Nanoscale; 2018 May; 10(19):8938-8946. PubMed ID: 29741546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared.
    Venuthurumilli PK; Ye PD; Xu X
    ACS Nano; 2018 May; 12(5):4861-4867. PubMed ID: 29684270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmons in a nanostructured black phosphorus flake.
    Ni X; Wang L; Zhu J; Chen X; Lu W
    Opt Lett; 2017 Jul; 42(13):2659-2662. PubMed ID: 28957309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping.
    Xiong F; Zhang J; Zhu Z; Yuan X; Qin S
    Sci Rep; 2015 Nov; 5():16998. PubMed ID: 26582477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient HIE-FDTD method for designing a dual-band anisotropic terahertz absorption structure.
    Zhou Y; Li H; Li L; Cai Y; Zeyde K; Han X
    Opt Express; 2021 Jun; 29(12):18611-18623. PubMed ID: 34154114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic sensors based on graphene and graphene hybrid materials.
    Zhang Z; Lee Y; Haque MF; Leem J; Hsieh EY; Nam S
    Nano Converg; 2022 Jun; 9(1):28. PubMed ID: 35695997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically reconfigurable architectured graphene for tunable plasmonic resonances.
    Kang P; Kim KH; Park HG; Nam S
    Light Sci Appl; 2018; 7():17. PubMed ID: 30839518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor.
    Zhang J; Hong Q; Zou J; He Y; Yuan X; Zhu Z; Qin S
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.