BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30131146)

  • 1. Bioinactivation FE: A free web application for modelling isothermal and dynamic microbial inactivation.
    Garre A; Clemente-Carazo M; Fernández PS; Lindqvist R; Egea JA
    Food Res Int; 2018 Oct; 112():353-360. PubMed ID: 30131146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinactivation: Software for modelling dynamic microbial inactivation.
    Garre A; Fernández PS; Lindqvist R; Egea JA
    Food Res Int; 2017 Mar; 93():66-74. PubMed ID: 28290281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response to the letter to Editor for "Bioinactivation FE: A free web application for modelling isothermal and dynamic microbial inactivation".
    Garre A; Clemente Carazo M; Fernández PS; Lindqvist R; Egea JA
    Food Res Int; 2019 Aug; 122():692-694. PubMed ID: 31229130
    [No Abstract]   [Full Text] [Related]  

  • 4. Guidelines for the design of (optimal) isothermal inactivation experiments.
    Peñalver-Soto JL; Garre A; Esnoz A; Fernández PS; Egea JA
    Food Res Int; 2019 Dec; 126():108714. PubMed ID: 31732079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducibility of Salmonella Thermal Resistance Measurements via Multilaboratory Isothermal Inactivation Experiments.
    Hildebrandt IM; Marks BP; Anderson NM; Grasso-Kelley EM
    J Food Prot; 2020 Apr; 83(4):609-614. PubMed ID: 32221564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the heat inactivation of foodborne pathogens in milk powder: High relevance of the substrate water activity.
    Lang E; Chemlal L; Molin P; Guyot S; Alvarez-Martin P; Perrier-Cornet JM; Dantigny P; Gervais P
    Food Res Int; 2017 Sep; 99(Pt 1):577-585. PubMed ID: 28784519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects and interactions of gallic acid, eugenol and temperature on thermal inactivation of Salmonella spp. in ground chicken.
    López-Romero JC; Valenzuela-Melendres M; Juneja VK; García-Dávila J; Camou JP; Peña-Ramos A; González-Ríos H
    Food Res Int; 2018 Jan; 103():289-294. PubMed ID: 29389617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Gauss-Eyring model to predict thermal inactivation of micro-organisms at short holding times.
    Timmermans RAH; Mastwijk HC; Nierop Groot MN; Van Boekel MAJS
    Int J Food Microbiol; 2017 Dec; 263():47-60. PubMed ID: 29031104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical quantification of the induced stress resistance of microbial populations during non-isothermal stresses.
    Garre A; Huertas JP; González-Tejedor GA; Fernández PS; Egea JA; Palop A; Esnoz A
    Int J Food Microbiol; 2018 Feb; 266():133-141. PubMed ID: 29216553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different model hypotheses are needed to account for qualitative variability in the response of two strains of Salmonella spp. under dynamic conditions.
    Georgalis L; Psaroulaki A; Aznar A; Fernández PS; Garre A
    Food Res Int; 2022 Aug; 158():111477. PubMed ID: 35840198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive software for estimating the efficacy of non-isothermal heat preservation processes.
    Peleg M; Normand MD; Corradini MG
    Int J Food Microbiol; 2008 Aug; 126(1-2):250-7. PubMed ID: 18571264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modelling of the stress resistance induced in Listeria monocytogenes during dynamic, mild heat treatments.
    Garre A; González-Tejedor GA; Aznar A; Fernández PS; Egea JA
    Food Microbiol; 2019 Dec; 84():103238. PubMed ID: 31421752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of predictive modelling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination.
    Valdramidis VP; Belaubre N; Zuniga R; Foster AM; Havet M; Geeraerd AH; Swain MJ; Bernaerts K; Van Impe JF; Kondjoyan A
    Int J Food Microbiol; 2005 Apr; 100(1-3):261-74. PubMed ID: 15854711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the irradiation followed by heat inactivation of Salmonella inoculated in liquid whole egg.
    Alvarez I; Niemira BA; Fan X; Sommers CH
    J Food Sci; 2007 Jun; 72(5):M145-52. PubMed ID: 17995736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress adaptation has a minor impact on the effectivity of Non-Thermal Atmospheric Plasma (NTAP) against Salmonella spp.
    Calvo T; Alvarez-Ordóñez A; Prieto M; Bernardo A; López M
    Food Res Int; 2017 Dec; 102():519-525. PubMed ID: 29195981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limonene nanoemulsified with soya lecithin reduces the intensity of non-isothermal treatments for inactivation of Listeria monocytogenes.
    Garre A; Espín JF; Huertas JP; Periago PM; Palop A
    Sci Rep; 2020 Feb; 10(1):3656. PubMed ID: 32107438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating microbial survival parameters and predicting survival curves from non-isothermal inactivation data.
    Peleg M; Normand MD
    Crit Rev Food Sci Nutr; 2004; 44(6):409-18. PubMed ID: 15615424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of Salmonella during cocoa roasting and chocolate conching.
    Nascimento Mda S; Brum DM; Pena PO; Berto MI; Efraim P
    Int J Food Microbiol; 2012 Oct; 159(3):225-9. PubMed ID: 23107501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of an organism's inactivation patterns from three single survival ratios determined at the end of three non-isothermal heat treatments.
    Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2008 Aug; 126(1-2):98-111. PubMed ID: 18579249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.