These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30131463)

  • 1. Experimental Manipulation of Dispersal Ability in A Neotropical Butterfly
    Srygley RB
    Insects; 2018 Aug; 9(3):. PubMed ID: 30131463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EXPERIMENTAL ANALYSES OF WING SIZE, FLIGHT, AND SURVIVAL IN THE WESTERN WHITE BUTTERFLY.
    Kingsolver JG
    Evolution; 1999 Oct; 53(5):1479-1490. PubMed ID: 28565569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular phylogeny of the neotropical butterfly genus Anartia (Lepidoptera: Nymphalidae).
    Blum MJ; Bermingham E; Dasmahapatra K
    Mol Phylogenet Evol; 2003 Jan; 26(1):46-55. PubMed ID: 12470937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired escape flight ability in butterflies due to low flight muscle ratio prior to hibernation.
    Almbro M; Kullberg C
    J Exp Biol; 2008 Jan; 211(Pt 1):24-8. PubMed ID: 18083728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cool Bands: Wing bands decrease rate of heating, but not equilibrium temperature in Anartia fatima.
    Brashears J; Aiello A; Seymoure BM
    J Therm Biol; 2016 Feb; 56():100-8. PubMed ID: 26857983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruptive Coloration in Butterflies: Lack of Support in Anartia fatima.
    Silberglied RE; Aiello A; Windsor DM
    Science; 1980 Aug; 209(4456):617-9. PubMed ID: 17756845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flight-induced changes in gene expression in the Glanville fritillary butterfly.
    Kvist J; Mattila AL; Somervuo P; Ahola V; Koskinen P; Paulin L; Salmela L; Fountain T; Rastas P; Ruokolainen A; Taipale M; Holm L; Auvinen P; Lehtonen R; Frilander MJ; Hanski I
    Mol Ecol; 2015 Oct; 24(19):4886-900. PubMed ID: 26331775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Take-off performance under optimal and suboptimal thermal conditions in the butterfly Pararge aegeria.
    Berwaerts K; Van Dyck H
    Oecologia; 2004 Nov; 141(3):536-45. PubMed ID: 15309609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoregulatory ability and mechanism do not differ consistently between neotropical and temperate butterflies.
    Laird-Hopkins BC; Ashe-Jepson E; Basset Y; Arizala Cobo S; Eberhardt L; Freiberga I; Hellon J; Hitchcock GE; Kleckova I; Linke D; Lamarre GPA; McFarlane A; Savage AF; Turner EC; Zamora AC; Sam K; Bladon AJ
    Glob Chang Biol; 2023 Aug; 29(15):4180-4192. PubMed ID: 37315654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher mobility of butterflies than moths connected to habitat suitability and body size in a release experiment.
    Kuussaari M; Saarinen M; Korpela EL; Pöyry J; Hyvönen T
    Ecol Evol; 2014 Oct; 4(19):3800-11. PubMed ID: 25614794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersal propensity, but not flight performance, explains variation in dispersal ability.
    Steyn VM; Mitchell KA; Terblanche JS
    Proc Biol Sci; 2016 Aug; 283(1836):. PubMed ID: 27488649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cruising the rain forest floor: butterfly wing shape evolution and gliding in ground effect.
    Cespedes A; Penz CM; DeVries PJ
    J Anim Ecol; 2015 May; 84(3):808-816. PubMed ID: 25484251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferences from a rapidly moving hybrid zone.
    Dasmahapatra KK; Blum MJ; Aiello A; Hackwel S; Davies N; Bermingham EP; Mallet J
    Evolution; 2002 Apr; 56(4):741-53. PubMed ID: 12038532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A meta-analysis of dispersal in butterflies.
    Stevens VM; Turlure C; Baguette M
    Biol Rev Camb Philos Soc; 2010 Aug; 85(3):625-42. PubMed ID: 20055815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme polymorphism, oxygen and injury: a lipidomic analysis of flight-induced oxidative damage in a
    Pekny JE; Smith PB; Marden JH
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29444838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flight morphology of Neotropical butterflies: palatability and distribution of mass to the thorax and abdomen.
    Srygley RB; Chai P
    Oecologia; 1990 Oct; 84(4):491-499. PubMed ID: 28312965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersal and gene flow in a butterfly with home range behavior: Heliconius erato (Lepidoptera: Nymphalidae).
    Mallet J
    Oecologia; 1986 Jan; 68(2):210-217. PubMed ID: 28310129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sexual dimorphism in the alpine butterflies Boloria pales and Boloria napaea: differences in movement and foraging behavior (Lepidoptera: Nymphalidae).
    Ehl S; Hostert K; Korsch J; Gros P; Schmitt T
    Insect Sci; 2018 Dec; 25(6):1089-1101. PubMed ID: 28618194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flight Morphology, Compound Eye Structure and Dispersal in the Bog and the Cranberry Fritillary Butterflies: An Inter- and Intraspecific Comparison.
    Turlure C; Schtickzelle N; Van Dyck H; Seymoure B; Rutowski R
    PLoS One; 2016; 11(6):e0158073. PubMed ID: 27336590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FLIGHT PHYSIOLOGY OF NEOTROPICAL BUTTERFLIES: ALLOMETRY OF AIRSPEEDS DURING NATURAL FREE FLIGHT.
    Dudley R; Srygley R
    J Exp Biol; 1994 Jun; 191(1):125-39. PubMed ID: 9317473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.