These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30131572)

  • 1. Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security.
    Singh S; Vikram P; Sehgal D; Burgueño J; Sharma A; Singh SK; Sansaloni CP; Joynson R; Brabbs T; Ortiz C; Solis-Moya E; Govindan V; Gupta N; Sidhu HS; Basandrai AK; Basandrai D; Ledesma-Ramires L; Suaste-Franco MP; Fuentes-Dávila G; Moreno JI; Sonder K; Singh VK; Singh S; Shokat S; Arif MAR; Laghari KA; Srivastava P; Bhavani S; Kumar S; Pal D; Jaiswal JP; Kumar U; Chaudhary HK; Crossa J; Payne TS; Imtiaz M; Sohu VS; Singh GP; Bains NS; Hall A; Pixley KV
    Sci Rep; 2018 Aug; 8(1):12527. PubMed ID: 30131572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exotic QTL improve grain quality in the tri-parental wheat population SW84.
    Nedelkou IP; Maurer A; Schubert A; Léon J; Pillen K
    PLoS One; 2017; 12(7):e0179851. PubMed ID: 28686676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GWAS to Identify Genetic Loci for Resistance to Yellow Rust in Wheat Pre-Breeding Lines Derived From Diverse Exotic Crosses.
    Ledesma-Ramírez L; Solís-Moya E; Iturriaga G; Sehgal D; Reyes-Valdes MH; Montero-Tavera V; Sansaloni CP; Burgueño J; Ortiz C; Aguirre-Mancilla CL; Ramírez-Pimentel JG; Vikram P; Singh S
    Front Plant Sci; 2019; 10():1390. PubMed ID: 31781137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a High-Density SNP-Based Linkage Map and Detection of QTL for β-Glucans, Protein Content, Grain Yield per Spike and Heading Time in Durum Wheat.
    Marcotuli I; Gadaleta A; Mangini G; Signorile AM; Zacheo SA; Blanco A; Simeone R; Colasuonno P
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28635630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping QTLs for grain yield components in wheat under heat stress.
    Bhusal N; Sarial AK; Sharma P; Sareen S
    PLoS One; 2017; 12(12):e0189594. PubMed ID: 29261718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides x T. tauschii) as a source of favourable alleles for milling and baking quality traits.
    Kunert A; Naz AA; Dedeck O; Pillen K; Léon J
    Theor Appl Genet; 2007 Sep; 115(5):683-95. PubMed ID: 17634917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Contribution of Synthetic Hexaploid Wheat to CIMMYT's Spring Bread Wheat Breeding Germplasm.
    Rosyara U; Kishii M; Payne T; Sansaloni CP; Singh RP; Braun HJ; Dreisigacker S
    Sci Rep; 2019 Aug; 9(1):12355. PubMed ID: 31451719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The grain Hardness locus characterized in a diverse wheat panel (Triticum aestivum L.) adapted to the central part of the Fertile Crescent: genetic diversity, haplotype structure, and phylogeny.
    Shaaf S; Sharma R; Baloch FS; Badaeva ED; Knüpffer H; Kilian B; Özkan H
    Mol Genet Genomics; 2016 Jun; 291(3):1259-75. PubMed ID: 26898967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced radiation use efficiency and grain filling rate as the main drivers of grain yield genetic gains in the CIMMYT elite spring wheat yield trial.
    Gerard G; Mondal S; Piñera-Chávez F; Rivera-Amado C; Molero G; Crossa J; Huerta-Espino J; Velu G; Braun H; Singh R; Crespo-Herrera L
    Sci Rep; 2024 May; 14(1):10975. PubMed ID: 38744876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unlocking the novel genetic diversity and population structure of synthetic Hexaploid wheat.
    Bhatta M; Morgounov A; Belamkar V; Poland J; Baenziger PS
    BMC Genomics; 2018 Aug; 19(1):591. PubMed ID: 30081829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A GWAS to identify the cereal cyst nematode (Heterodera filipjevi) resistance loci in diverse wheat prebreeding lines.
    Dababat A; Arif MAR; Toktay H; Atiya O; Shokat S; E-Orakci G; Imren M; Singh S
    J Appl Genet; 2021 Feb; 62(1):93-98. PubMed ID: 33403645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exotic alleles contribute to heat tolerance in wheat under field conditions.
    Molero G; Coombes B; Joynson R; Pinto F; Piñera-Chávez FJ; Rivera-Amado C; Hall A; Reynolds MP
    Commun Biol; 2023 Jan; 6(1):21. PubMed ID: 36624201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Haplotype-Based Analysis of
    Nyine M; Adhikari E; Clinesmith M; Aiken R; Betzen B; Wang W; Davidson D; Yu Z; Guo Y; He F; Akhunova A; Jordan KW; Fritz AK; Akhunov E
    Front Plant Sci; 2021; 12():716955. PubMed ID: 34484280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple wheat genomes reveal global variation in modern breeding.
    Walkowiak S; Gao L; Monat C; Haberer G; Kassa MT; Brinton J; Ramirez-Gonzalez RH; Kolodziej MC; Delorean E; Thambugala D; Klymiuk V; Byrns B; Gundlach H; Bandi V; Siri JN; Nilsen K; Aquino C; Himmelbach A; Copetti D; Ban T; Venturini L; Bevan M; Clavijo B; Koo DH; Ens J; Wiebe K; N'Diaye A; Fritz AK; Gutwin C; Fiebig A; Fosker C; Fu BX; Accinelli GG; Gardner KA; Fradgley N; Gutierrez-Gonzalez J; Halstead-Nussloch G; Hatakeyama M; Koh CS; Deek J; Costamagna AC; Fobert P; Heavens D; Kanamori H; Kawaura K; Kobayashi F; Krasileva K; Kuo T; McKenzie N; Murata K; Nabeka Y; Paape T; Padmarasu S; Percival-Alwyn L; Kagale S; Scholz U; Sese J; Juliana P; Singh R; Shimizu-Inatsugi R; Swarbreck D; Cockram J; Budak H; Tameshige T; Tanaka T; Tsuji H; Wright J; Wu J; Steuernagel B; Small I; Cloutier S; Keeble-Gagnère G; Muehlbauer G; Tibbets J; Nasuda S; Melonek J; Hucl PJ; Sharpe AG; Clark M; Legg E; Bharti A; Langridge P; Hall A; Uauy C; Mascher M; Krattinger SG; Handa H; Shimizu KK; Distelfeld A; Chalmers K; Keller B; Mayer KFX; Poland J; Stein N; McCartney CA; Spannagl M; Wicker T; Pozniak CJ
    Nature; 2020 Dec; 588(7837):277-283. PubMed ID: 33239791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments.
    Sukumaran S; Dreisigacker S; Lopes M; Chavez P; Reynolds MP
    Theor Appl Genet; 2015 Feb; 128(2):353-63. PubMed ID: 25490985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat.
    Jiang Y; Schmidt RH; Zhao Y; Reif JC
    Nat Genet; 2017 Dec; 49(12):1741-1746. PubMed ID: 29038596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum).
    Milner SG; Maccaferri M; Huang BE; Mantovani P; Massi A; Frascaroli E; Tuberosa R; Salvi S
    Plant Biotechnol J; 2016 Feb; 14(2):735-48. PubMed ID: 26132599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat.
    Bhatta M; Baenziger PS; Waters BM; Poudel R; Belamkar V; Poland J; Morgounov A
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30347689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alleles of the GRF3-2A Gene in Wheat and Their Agronomic Value.
    Bazhenov MS; Chernook AG; Bespalova LA; Gritsay TI; Polevikova NA; Karlov GI; Nazarova LA; Divashuk MG
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.).
    Tahmasebi S; Heidari B; Pakniyat H; McIntyre CL
    Genome; 2017 Jan; 60(1):26-45. PubMed ID: 27996306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.