These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 3013160)

  • 1. Transient kinetics of subunit-III-depleted cytochrome c oxidase.
    Malatesta F; Antonini G; Sarti P; Brunori M
    Biochem J; 1986 Mar; 234(3):569-72. PubMed ID: 3013160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stopped-flow, laser-flash photolysis studies on the reactions of CO and O2 with the cytochrome caa3 complex from Bacillus subtilis: conservation of electron transfer pathways from cytochrome c to O2.
    Hill BC
    Biochemistry; 1996 May; 35(19):6136-43. PubMed ID: 8634256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic strength dependence of the kinetics of electron transfer from bovine mitochondrial cytochrome c to bovine cytochrome c oxidase.
    Hazzard JT; Rong SY; Tollin G
    Biochemistry; 1991 Jan; 30(1):213-22. PubMed ID: 1846288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome c oxidase as an electron-transport-driven proton pump: pH dependence of the reduction levels of the redox centers during turnover.
    Thörnström PE; Brzezinski P; Fredriksson PO; Malmström BG
    Biochemistry; 1988 Jul; 27(15):5441-7. PubMed ID: 2846037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic evidence for the re-definition of electron transfer pathways from cytochrome c to O2 within cytochrome oxidase.
    Hill BC; Greenwood C
    FEBS Lett; 1984 Jan; 166(2):362-6. PubMed ID: 6319198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stopped-flow studies of cytochrome oxidase reconstituted into liposomes: proton pumping and control of activity.
    Brunori M; Antonini G; Colosimo A; Malatesta F; Sarti P; Jones MG; Wilson MT
    J Inorg Biochem; 1985; 23(3-4):373-9. PubMed ID: 2410570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser flash photolysis studies of electron transfer between semiquinone and fully reduced free flavins and the cytochrome c-cytochrome oxidase complex.
    Ahmad I; Cusanovich MA; Tollin G
    Biochemistry; 1982 Jun; 21(13):3122-8. PubMed ID: 6285959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-temperature studies of electron transfer between different cytochromes c and cytochrome c oxidase.
    Ferguson-Miller S; Brautigan DL; Chance B; Waring A; Margoliash E
    Biochemistry; 1978 May; 17(11):2246-9. PubMed ID: 208599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome c oxidase depleted of subunit III: proton-pumping, respiratory control, and pH dependence of the midpoint potential of cytochrome a.
    Thompson DA; Gregory L; Ferguson-Miller S
    J Inorg Biochem; 1985; 23(3-4):357-64. PubMed ID: 2410568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome c oxidase: decay of the primary oxygen intermediate involves direct electron transfer from cytochrome a.
    Han SH; Ching YC; Rousseau DL
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8408-12. PubMed ID: 2172987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-transfer processes in carboxy-cytochrome c oxidase after photodissociation of cytochrome a3 2+ . CO.
    Boelens R; Wever R
    Biochim Biophys Acta; 1979 Aug; 547(2):296-310. PubMed ID: 223638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of electron transfer by the electrochemical potential gradient in cytochrome-c oxidase reconstituted into phospholipid vesicles.
    Sarti P; Malatesta F; Antonini G; Vallone B; Brunori M
    J Biol Chem; 1990 Apr; 265(10):5554-60. PubMed ID: 2156821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The caa3 terminal oxidase of Bacillus stearothermophilus. Transient spectroscopy of electron transfer and ligand binding.
    Giuffrè A; D'Itri E; Giannini S; Brunori M; Ubbink-Kok T; Konings WN; Antonini G
    J Biol Chem; 1996 Jun; 271(24):13987-92. PubMed ID: 8662862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of subunit III in bovine cytochrome c oxidase. Comparison between native, subunit III-depleted and Paracoccus denitrificans enzymes.
    Nałeçz KA; Bolli R; Ludwig B; Azzi A
    Biochim Biophys Acta; 1985 Jul; 808(2):259-72. PubMed ID: 2990554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oxidation of cytochrome c oxidase by hydrogen peroxide.
    Gorren AC; Dekker H; Wever R
    Biochim Biophys Acta; 1985 Aug; 809(1):90-6. PubMed ID: 2992583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-electron reduction is required for rapid internal electron transfer in resting, pulsed and oxygenated cytochrome c oxidase.
    Fabian M; Thörnström PE; Brzezinski P; Malmström BG
    FEBS Lett; 1987 Mar; 213(2):396-400. PubMed ID: 3030819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reaction of Pseudomonas aeruginosa cytochrome c oxidase with carbon monoxide.
    Parr SR; Wilson MT; Greenwood C
    Biochem J; 1975 Oct; 151(1):51-9. PubMed ID: 174556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular electron transfer in cytochrome c oxidase: a cascade of equilibria.
    Verkhovsky MI; Morgan JE; Wikström M
    Biochemistry; 1992 Dec; 31(47):11860-3. PubMed ID: 1332775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of electron gating in proton pumping cytochrome c oxidase: the effect of pH and temperature on internal electron transfer.
    Brzezinski P; Malmström BG
    Biochim Biophys Acta; 1987 Oct; 894(1):29-38. PubMed ID: 2444256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of electron-transfer and proton-translocation activities in bovine heart mitochondrial cytochrome c oxidase deficient in subunit III.
    Prochaska LJ; Reynolds KA
    Biochemistry; 1986 Feb; 25(4):781-7. PubMed ID: 3008812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.