BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30131680)

  • 1. Modulation of Motoneuronal Activity With Sleep-Wake States and Motoneuronal Gene Expression Vary With Circadian Rest-Activity Cycle.
    Herr KB; Mann GL; Kubin L
    Front Integr Neurosci; 2018; 12():32. PubMed ID: 30131680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoglossal motoneurons are endogenously activated by serotonin during the active period of circadian cycle.
    Kubin L; Mann GL
    Respir Physiol Neurobiol; 2018 Jan; 248():17-24. PubMed ID: 29129751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effect of sleep-wake states on lingual and dorsal neck muscle activity in rats.
    Lu JW; Mann GL; Ross RJ; Morrison AR; Kubin L
    Respir Physiol Neurobiol; 2005 Jul; 147(2-3):191-203. PubMed ID: 15964252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromyographic activity at the base and tip of the tongue across sleep-wake states in rats.
    Lu JW; Kubin L
    Respir Physiol Neurobiol; 2009 Jul; 167(3):307-15. PubMed ID: 19539786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.
    Rukhadze I; Kamani H; Kubin L
    Arch Ital Biol; 2011 Dec; 149(4):499-515. PubMed ID: 22205596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiratory modulation of lingual muscle activity across sleep-wake states in rats.
    Stettner GM; Rukhadze I; Mann GL; Lei Y; Kubin L
    Respir Physiol Neurobiol; 2013 Sep; 188(3):308-17. PubMed ID: 23732510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian dependence of receptors that mediate wake-related excitatory drive to hypoglossal motoneurons.
    Volgin DV; Stettner GM; Kubin L
    Respir Physiol Neurobiol; 2013 Sep; 188(3):301-7. PubMed ID: 23665050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in circadian sleep-wake and rest-activity rhythms during different phases of menstrual cycle].
    Liu HY; Bao AM; Zhou JN; Liu RY
    Sheng Li Xue Bao; 2005 Jun; 57(3):389-94. PubMed ID: 15968438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lingual muscle activity across sleep-wake States in rats with surgically altered upper airway.
    Rukhadze I; Kalter J; Stettner GM; Kubin L
    Front Neurol; 2014; 5():61. PubMed ID: 24803913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre- and post-natal protein malnutrition alters the effect of rapid eye movements sleep-deprivation by the platform-technique upon the electrocorticogram of the circadian sleep-wake cycle and its frequency bands in the rat.
    Cintra L; Durán P; Guevara MA; Aguilar A; Castañón-Cervantes O
    Nutr Neurosci; 2002 Apr; 5(2):91-101. PubMed ID: 12000087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice.
    Sakai K
    Neuroscience; 2014 Feb; 260():249-64. PubMed ID: 24355494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of hypoglossal motoneurons during the carbachol-induced atonia of REM sleep is not caused by fast synaptic inhibition.
    Kubin L; Kimura H; Tojima H; Davies RO; Pack AI
    Brain Res; 1993 May; 611(2):300-12. PubMed ID: 8334524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans.
    Dijk DJ; Czeisler CA
    J Neurosci; 1995 May; 15(5 Pt 1):3526-38. PubMed ID: 7751928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian regulation gene polymorphisms are associated with sleep disruption and duration, and circadian phase and rhythm in adults with HIV.
    Lee KA; Gay C; Byun E; Lerdal A; Pullinger CR; Aouizerat BE
    Chronobiol Int; 2015; 32(9):1278-93. PubMed ID: 26512752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of circadian rhythm components in EEG/EMG data of aged mice.
    Masuda K; Katsuda Y; Niwa Y; Sakurai T; Hirano A
    Front Neurosci; 2023; 17():1173537. PubMed ID: 37250413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase.
    Trachsel L; Tobler I; Borbély AA
    Am J Physiol; 1986 Dec; 251(6 Pt 2):R1037-44. PubMed ID: 3789191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced sleep and impaired sleep initiation in adult male rats exposed to alcohol during early postnatal period.
    Volgin DV; Kubin L
    Behav Brain Res; 2012 Sep; 234(1):38-42. PubMed ID: 22698707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of prior wakefulness and circadian phase on nap sleep.
    Dinges DF
    Electroencephalogr Clin Neurophysiol; 1986 Sep; 64(3):224-7. PubMed ID: 2427317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD
    Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The circadian rest-activity cycle in Korsakoff psychosis.
    Wirz-Justice A; Schröder CM; Gasio PF; Cajochen C; Savaskan E
    Am J Geriatr Psychiatry; 2010 Jan; 18(1):33-41. PubMed ID: 19910886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.