These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30131695)

  • 1. Anion-Transport Mechanism of a Triazole-Bearing Derivative of Prodigiosine: A Candidate for Cystic Fibrosis Therapy.
    Cossu C; Fiore M; Baroni D; Capurro V; Caci E; Garcia-Valverde M; Quesada R; Moran O
    Front Pharmacol; 2018; 9():852. PubMed ID: 30131695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small molecule-facilitated anion transporters in cells for a novel therapeutic approach to cystic fibrosis.
    Fiore M; Cossu C; Capurro V; Picco C; Ludovico A; Mielczarek M; Carreira-Barral I; Caci E; Baroni D; Quesada R; Moran O
    Br J Pharmacol; 2019 Jun; 176(11):1764-1779. PubMed ID: 30825185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small molecule anionophores promote transmembrane anion permeation matching CFTR activity.
    Hernando E; Capurro V; Cossu C; Fiore M; García-Valverde M; Soto-Cerrato V; Pérez-Tomás R; Moran O; Zegarra-Moran O; Quesada R
    Sci Rep; 2018 Feb; 8(1):2608. PubMed ID: 29422673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The different anion transport capability of prodiginine- and tambjamine-like molecules.
    Fiore M; García-Valverde M; Carreira-Barral I; Moran O
    Eur J Pharmacol; 2020 Dec; 889():173592. PubMed ID: 32979354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular Transmembrane Anion Transport: New Assays and Insights.
    Wu X; Howe ENW; Gale PA
    Acc Chem Res; 2018 Aug; 51(8):1870-1879. PubMed ID: 30063324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anion carriers as potential treatments for cystic fibrosis: transport in cystic fibrosis cells, and additivity to channel-targeting drugs.
    Li H; Valkenier H; Thorne AG; Dias CM; Cooper JA; Kieffer M; Busschaert N; Gale PA; Sheppard DN; Davis AP
    Chem Sci; 2019 Nov; 10(42):9663-9672. PubMed ID: 32055336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preorganized bis-thioureas as powerful anion carriers: chloride transport by single molecules in large unilamellar vesicles.
    Valkenier H; Judd LW; Li H; Hussain S; Sheppard DN; Davis AP
    J Am Chem Soc; 2014 Sep; 136(35):12507-12. PubMed ID: 25122590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane anion transport mediated by halogen bonding and hydrogen bonding triazole anionophores.
    Bickerton LE; Sterling AJ; Beer PD; Duarte F; Langton MJ
    Chem Sci; 2020 Apr; 11(18):4722-4729. PubMed ID: 34122927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects.
    Kuk K; Taylor-Cousar JL
    Ther Adv Respir Dis; 2015 Dec; 9(6):313-26. PubMed ID: 26416827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological treatment of the ion transport defect in cystic fibrosis.
    Roomans GM
    Expert Opin Investig Drugs; 2001 Jan; 10(1):1-19. PubMed ID: 11116277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic approaches to CFTR dysfunction: From discovery to drug development.
    Li H; Pesce E; Sheppard DN; Singh AK; Pedemonte N
    J Cyst Fibros; 2018 Mar; 17(2S):S14-S21. PubMed ID: 28916430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered sulfate transport via anion exchange in CFPAC is corrected by retrovirus-mediated CFTR gene transfer.
    Elgavish A; Meezan E
    Am J Physiol; 1992 Jul; 263(1 Pt 1):C176-86. PubMed ID: 1378996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological approaches to correcting the ion transport defect in cystic fibrosis.
    Roomans GM
    Am J Respir Med; 2003; 2(5):413-31. PubMed ID: 14719993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pendrin Mediates Bicarbonate Secretion and Enhances Cystic Fibrosis Transmembrane Conductance Regulator Function in Airway Surface Epithelia.
    Kim D; Huang J; Billet A; Abu-Arish A; Goepp J; Matthes E; Tewfik MA; Frenkiel S; Hanrahan JW
    Am J Respir Cell Mol Biol; 2019 Jun; 60(6):705-716. PubMed ID: 30742493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bicarbonate in cystic fibrosis.
    Kunzelmann K; Schreiber R; Hadorn HB
    J Cyst Fibros; 2017 Nov; 16(6):653-662. PubMed ID: 28732801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    Yeh JT; Yu YC; Hwang TC
    J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New treatments targeting the basic defects in cystic fibrosis.
    Fajac I; Wainwright CE
    Presse Med; 2017 Jun; 46(6 Pt 2):e165-e175. PubMed ID: 28554723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.
    Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN
    Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal bicarbonate secretion in cystic fibrosis mice.
    Clarke LL; Stien X; Walker NM
    JOP; 2001 Jul; 2(4 Suppl):263-7. PubMed ID: 11875269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics.
    Kunzelmann K; Mall M
    Am J Respir Med; 2003; 2(4):299-309. PubMed ID: 14719996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.