BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

616 related articles for article (PubMed ID: 30131726)

  • 21. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases.
    Hallows WC; Lee S; Denu JM
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10230-10235. PubMed ID: 16790548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial sirtuins in the rat adrenal gland: location within the glands of males and females, hormonal and developmental regulation of gene expressions.
    Celichowski P; Jopek K; Szyszka M; Tyczewska M; Malendowicz LK; Rucinski M
    Folia Histochem Cytobiol; 2017; 55(4):190-202. PubMed ID: 29261224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases.
    Wu J; Zeng Z; Zhang W; Deng Z; Wan Y; Zhang Y; An S; Huang Q; Chen Z
    Free Radic Res; 2019 Feb; 53(2):139-149. PubMed ID: 30458637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation.
    Lombard DB; Alt FW; Cheng HL; Bunkenborg J; Streeper RS; Mostoslavsky R; Kim J; Yancopoulos G; Valenzuela D; Murphy A; Yang Y; Chen Y; Hirschey MD; Bronson RT; Haigis M; Guarente LP; Farese RV; Weissman S; Verdin E; Schwer B
    Mol Cell Biol; 2007 Dec; 27(24):8807-14. PubMed ID: 17923681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exogenous H
    Sun Y; Tian Z; Liu N; Zhang L; Gao Z; Sun X; Yu M; Wu J; Yang F; Zhao Y; Ren H; Chen H; Zhao D; Wang Y; Dong S; Xu C; Lu F; Zhang W
    J Mol Med (Berl); 2018 Apr; 96(3-4):281-299. PubMed ID: 29349500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation.
    Lombard DB; Tishkoff DX; Bao J
    Handb Exp Pharmacol; 2011; 206():163-88. PubMed ID: 21879450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sirtuin 3: Emerging therapeutic target for cardiovascular diseases.
    Cao M; Zhao Q; Sun X; Qian H; Lyu S; Chen R; Xia H; Yuan W
    Free Radic Biol Med; 2022 Feb; 180():63-74. PubMed ID: 35031448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms.
    Rauh D; Fischer F; Gertz M; Lakshminarasimhan M; Bergbrede T; Aladini F; Kambach C; Becker CF; Zerweck J; Schutkowski M; Steegborn C
    Nat Commun; 2013; 4():2327. PubMed ID: 23995836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SIRT3 substrate specificity determined by peptide arrays and machine learning.
    Smith BC; Settles B; Hallows WC; Craven MW; Denu JM
    ACS Chem Biol; 2011 Feb; 6(2):146-57. PubMed ID: 20945913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging.
    Sack MN
    J Mol Cell Cardiol; 2012 Mar; 52(3):520-5. PubMed ID: 22119802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exogenous H
    Sun Y; Teng Z; Sun X; Zhang L; Chen J; Wang B; Lu F; Liu N; Yu M; Peng S; Wang Y; Zhao D; Zhao Y; Ren H; Cheng Z; Dong S; Lu F; Zhang W
    Am J Physiol Endocrinol Metab; 2019 Aug; 317(2):E284-E297. PubMed ID: 31184932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target.
    Liu Y; Wei H; Li J
    Eur J Pharmacol; 2024 Jan; 963():176155. PubMed ID: 37914065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of mitochondrial F(o)F(1)ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977bp deletion of mitochondrial DNA.
    Wu YT; Lee HC; Liao CC; Wei YH
    Biochim Biophys Acta; 2013 Jan; 1832(1):216-27. PubMed ID: 23046812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Dec; 1862(12):2211-2220. PubMed ID: 27479696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease.
    Newman JC; He W; Verdin E
    J Biol Chem; 2012 Dec; 287(51):42436-43. PubMed ID: 23086951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging.
    Giralt A; Villarroya F
    Biochem J; 2012 May; 444(1):1-10. PubMed ID: 22533670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10.
    Yang Y; Cimen H; Han MJ; Shi T; Deng JH; Koc H; Palacios OM; Montier L; Bai Y; Tong Q; Koc EC
    J Biol Chem; 2010 Mar; 285(10):7417-29. PubMed ID: 20042612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation.
    Jing E; O'Neill BT; Rardin MJ; Kleinridders A; Ilkeyeva OR; Ussar S; Bain JR; Lee KY; Verdin EM; Newgard CB; Gibson BW; Kahn CR
    Diabetes; 2013 Oct; 62(10):3404-17. PubMed ID: 23835326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extreme Acetylation of the Cardiac Mitochondrial Proteome Does Not Promote Heart Failure.
    Davidson MT; Grimsrud PA; Lai L; Draper JA; Fisher-Wellman KH; Narowski TM; Abraham DM; Koves TR; Kelly DP; Muoio DM
    Circ Res; 2020 Sep; 127(8):1094-1108. PubMed ID: 32660330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation.
    Kendrick AA; Choudhury M; Rahman SM; McCurdy CE; Friederich M; Van Hove JL; Watson PA; Birdsey N; Bao J; Gius D; Sack MN; Jing E; Kahn CR; Friedman JE; Jonscher KR
    Biochem J; 2011 Feb; 433(3):505-14. PubMed ID: 21044047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.