These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30131778)

  • 1. Discovering Putative Prion-Like Proteins in
    Pallarès I; de Groot NS; Iglesias V; Sant'Anna R; Biosca A; Fernàndez-Busquets X; Ventura S
    Front Microbiol; 2018; 9():1737. PubMed ID: 30131778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores.
    Zambrano R; Conchillo-Sole O; Iglesias V; Illa R; Rousseau F; Schymkowitz J; Sabate R; Daura X; Ventura S
    Nucleic Acids Res; 2015 Jul; 43(W1):W331-7. PubMed ID: 25977297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains.
    Espinosa Angarica V; Ventura S; Sancho J
    BMC Genomics; 2013 May; 14():316. PubMed ID: 23663289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Rho Termination Factor of Clostridium botulinum Contains a Prion-Like Domain with a Highly Amyloidogenic Core.
    Pallarès I; Iglesias V; Ventura S
    Front Microbiol; 2015; 6():1516. PubMed ID: 26779170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amyloid cores in prion domains: Key regulators for prion conformational conversion.
    Fernández MR; Batlle C; Gil-García M; Ventura S
    Prion; 2017 Jan; 11(1):31-39. PubMed ID: 28281928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimalist Prion-Inspired Polar Self-Assembling Peptides.
    Díaz-Caballero M; Navarro S; Fuentes I; Teixidor F; Ventura S
    ACS Nano; 2018 Jun; 12(6):5394-5407. PubMed ID: 29812908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence and evolution of yeast prion and prion-like proteins.
    An L; Fitzpatrick D; Harrison PM
    BMC Evol Biol; 2016 Jan; 16():24. PubMed ID: 26809710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains.
    Shattuck JE; Waechter AC; Ross ED
    Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding the role of coiled-coil motifs in human prion-like proteins.
    Behbahanipour M; García-Pardo J; Ventura S
    Prion; 2021 Dec; 15(1):143-154. PubMed ID: 34428113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum.
    Singh GP; Chandra BR; Bhattacharya A; Akhouri RR; Singh SK; Sharma A
    Mol Biochem Parasitol; 2004 Oct; 137(2):307-19. PubMed ID: 15383301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Amyloid Cores in Prion Domains.
    Sant'Anna R; Fernández MR; Batlle C; Navarro S; de Groot NS; Serpell L; Ventura S
    Sci Rep; 2016 Sep; 6():34274. PubMed ID: 27686217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Cross-Beta Supersecondary Structure by Soft-Amyloid Cores: Strategies for Their Prediction and Characterization.
    Fernández MR; Pallarès I; Iglesias V; Santos J; Ventura S
    Methods Mol Biol; 2019; 1958():237-261. PubMed ID: 30945222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions.
    Michelitsch MD; Weissman JS
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11910-5. PubMed ID: 11050225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What makes a protein sequence a prion?
    Sabate R; Rousseau F; Schymkowitz J; Ventura S
    PLoS Comput Biol; 2015 Jan; 11(1):e1004013. PubMed ID: 25569335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the prion propensity of glutamine/asparagine-rich proteins.
    Paul KR; Ross ED
    Prion; 2015; 9(5):347-54. PubMed ID: 26555096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance.
    Duernberger Y; Liu S; Riemschoss K; Paulsen L; Bester R; Kuhn PH; Schölling M; Lichtenthaler SF; Vorberg I
    Mol Cell Biol; 2018 Aug; 38(15):. PubMed ID: 29784771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MED15 prion-like domain forms a coiled-coil responsible for its amyloid conversion and propagation.
    Batlle C; Calvo I; Iglesias V; J Lynch C; Gil-Garcia M; Serrano M; Ventura S
    Commun Biol; 2021 Mar; 4(1):414. PubMed ID: 33772081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolutionary scope and neurological disease linkage of yeast-prion-like proteins in humans.
    An L; Harrison PM
    Biol Direct; 2016 Jul; 11():32. PubMed ID: 27457357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Soft Amyloid Cores in Human Prion-Like Proteins.
    Batlle C; de Groot NS; Iglesias V; Navarro S; Ventura S
    Sci Rep; 2017 Sep; 7(1):12134. PubMed ID: 28935930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.