These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30131820)

  • 1. Identification of Rapeseed (
    Pommerrenig B; Junker A; Abreu I; Bieber A; Fuge J; Willner E; Bienert MD; Altmann T; Bienert GP
    Front Plant Sci; 2018; 9():1142. PubMed ID: 30131820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotypic differences in the synergistic effect of nitrogen and boron on the seed yield and nitrogen use efficiency of Brassica napus.
    Wang Y; Zhao Z; Wang S; Shi L; Xu F
    J Sci Food Agric; 2022 Jul; 102(9):3563-3571. PubMed ID: 34854085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytokinins as boron deficiency signals to sustain shoot development in boron-efficient oilseed rape.
    Pommerrenig B; Faber M; Hajirezaei MR; von Wirén N; Bienert GP
    Physiol Plant; 2022 Sep; 174(5):e13776. PubMed ID: 36066313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variation of BnaA3.NIP5;1 expressing in the lateral root cap contributes to boron deficiency tolerance in Brassica napus.
    He M; Wang S; Zhang C; Liu L; Zhang J; Qiu S; Wang H; Yang G; Xue S; Shi L; Xu F
    PLoS Genet; 2021 Jul; 17(7):e1009661. PubMed ID: 34197459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BnaA4.BOR2 contributes the tolerance of rapeseed to boron deficiency by improving the transport of boron from root to shoot.
    Liu W; Wang S; Ye X; Xu F
    Plant Physiol Biochem; 2024 Mar; 208():108508. PubMed ID: 38490152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.).
    Zhang F; Xiao X; Xu K; Cheng X; Xie T; Hu J; Wu X
    BMC Genomics; 2020 Feb; 21(1):139. PubMed ID: 32041524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boron and Phosphorus Act Synergistically to Modulate Absorption and Distribution of Phosphorus and Growth of
    Zhao Z; Wang S; White PJ; Wang Y; Shi L; Xu F
    J Agric Food Chem; 2020 Jul; 68(30):7830-7838. PubMed ID: 32614576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of the genome-wide BOR transporter gene family and genetic analysis of BnaC04.BOR1;1c in Brassica napus.
    Chen H; Zhang Q; He M; Wang S; Shi L; Xu F
    BMC Plant Biol; 2018 Sep; 18(1):193. PubMed ID: 30217178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of boron-efficient near isogenic lines of Brassica napus and their response to low boron stress at seedling stage.
    Zhao H; Liu J; Shi L; Xu F; Wang Y
    Genetika; 2010 Jan; 46(1):66-72. PubMed ID: 20198881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Boron Tolerance Strategies Involving Pectin-Mediated Cell Wall Mechanical Properties in Brassica napus.
    Zhou T; Hua Y; Zhang B; Zhang X; Zhou Y; Shi L; Xu F
    Plant Cell Physiol; 2017 Nov; 58(11):1991-2005. PubMed ID: 29016959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus.
    Wang G; Ding G; Li L; Cai H; Ye X; Zou J; Xu F
    Ann Bot; 2014 Sep; 114(3):549-59. PubMed ID: 24989788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Brassica napus boron deficient inflorescence transcriptome resembles a wounding and infection response.
    Verwaaijen B; Alcock TD; Spitzer C; Liu Z; Fiebig A; Bienert MD; Bräutigam A; Bienert GP
    Physiol Plant; 2023; 175(6):e14088. PubMed ID: 38148205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping.
    Wassan GM; Khanzada H; Zhou Q; Mason AS; Keerio AA; Khanzada S; Solangi AM; Faheem M; Fu D; He H
    Mol Genet Genomics; 2021 Mar; 296(2):391-408. PubMed ID: 33464396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BnaA02.NIP6;1a encodes a boron transporter required for plant development under boron deficiency in Brassica napus.
    Song G; Li X; Munir R; Khan AR; Azhar W; Khan S; Gan Y
    Plant Physiol Biochem; 2021 Apr; 161():36-45. PubMed ID: 33561659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological, genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes.
    Hua Y; Zhou T; Ding G; Yang Q; Shi L; Xu F
    J Exp Bot; 2016 Oct; 67(19):5769-5784. PubMed ID: 27639094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of boron fertilization on B uptake and utilization by oilseed rape(Brassica napus L.) under different soil moisture regimes].
    Lou Y; Yang Y; Xu J
    Ying Yong Sheng Tai Xue Bao; 2001 Jun; 12(3):478-80. PubMed ID: 11758442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root system architecture change in response to waterlogging stress in a 448 global collection of rapeseeds (Brassica napus L.).
    Ullah N; Qian F; Geng R; Xue Y; Guan W; Ji G; Li H; Huang Q; Cai G; Yan G; Wu X
    Planta; 2024 Mar; 259(5):95. PubMed ID: 38512412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage.
    El-Badri AM; Batool M; Mohamed IAA; Wang Z; Wang C; Tabl KM; Khatab A; Kuai J; Wang J; Wang B; Zhou G
    Environ Pollut; 2022 Oct; 310():119815. PubMed ID: 35926737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon Enhances
    Réthoré E; Ali N; Pluchon S; Hosseini SA
    Plants (Basel); 2023 Jul; 12(13):. PubMed ID: 37447134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.