These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30131998)

  • 1. The evolution in graphitic surface wettability with first-principles quantum simulations: the counterintuitive role of water.
    Lu JY; Lai CY; Almansoori I; Chiesa M
    Phys Chem Chem Phys; 2018 Sep; 20(35):22636-22644. PubMed ID: 30131998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.
    Kozbial A; Trouba C; Liu H; Li L
    Langmuir; 2017 Jan; 33(4):959-967. PubMed ID: 28071919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time dependent wettability of graphite upon ambient exposure: the role of water adsorption.
    Amadei CA; Lai CY; Heskes D; Chiesa M
    J Chem Phys; 2014 Aug; 141(8):084709. PubMed ID: 25173032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Prediction of Calcite Surface Wettability with First-Principles Quantum Simulation.
    Lu JY; Ge Q; Li H; Raza A; Zhang T
    J Phys Chem Lett; 2017 Nov; 8(21):5309-5316. PubMed ID: 28985077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale Simulation Method for Quantitative Prediction of Surface Wettability at the Atomistic Level.
    Gim S; Lim HK; Kim H
    J Phys Chem Lett; 2018 Apr; 9(7):1750-1758. PubMed ID: 29558139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of nanoscale behaviour of forces and macroscale surface wettability.
    Rana A; Patra A; Annamalai M; Srivastava A; Ghosh S; Stoerzinger K; Lee YL; Prakash S; Jueyuan RY; Goohpattader PS; Satyanarayana N; Gopinadhan K; Dykas MM; Poddar K; Saha S; Sarkar T; Kumar B; Bhatia CS; Giordano L; Shao-Horn Y; Venkatesan T
    Nanoscale; 2016 Aug; 8(34):15597-603. PubMed ID: 27510557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis.
    Ramos-Alvarado B; Kumar S; Peterson GP
    J Chem Phys; 2015 Jul; 143(4):044703. PubMed ID: 26233153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are Graphitic Surfaces Hydrophobic?
    Kozbial A; Zhou F; Li Z; Liu H; Li L
    Acc Chem Res; 2016 Dec; 49(12):2765-2773. PubMed ID: 27935273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings.
    Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Tobin MJ; Gervinskas G; Juodkazis S; Wang JY; Crawford RJ; Ivanova EP
    Langmuir; 2012 Dec; 28(50):17404-9. PubMed ID: 23181510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water.
    Bartali R; Otyepka M; Pykal M; Lazar P; Micheli V; Gottardi G; Laidani N
    ACS Appl Mater Interfaces; 2017 May; 9(20):17517-17525. PubMed ID: 28474883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces.
    Xu LC; Siedlecki CA
    Biomaterials; 2007 Aug; 28(22):3273-83. PubMed ID: 17466368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of surface wettability on the adhesion of proteins.
    Sethuraman A; Han M; Kane RS; Belfort G
    Langmuir; 2004 Aug; 20(18):7779-88. PubMed ID: 15323531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water wettability of graphene: interplay between the interfacial water structure and the electronic structure.
    Liu J; Lai CY; Zhang YY; Chiesa M; Pantelides ST
    RSC Adv; 2018 May; 8(30):16918-16926. PubMed ID: 35540542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials?
    Spriano S; Sarath Chandra V; Cochis A; Uberti F; Rimondini L; Bertone E; Vitale A; Scolaro C; Ferrari M; Cirisano F; Gautier di Confiengo G; Ferraris S
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():542-555. PubMed ID: 28254329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.
    Li H; Zeng XC
    ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AFM Study of Surface Nanobubbles on Binary Self-Assembled Monolayers on Ultraflat Gold with Identical Macroscopic Static Water Contact Angles and Different Terminal Functional Groups.
    Song B; Chen K; Schmittel M; Schönherr H
    Langmuir; 2016 Nov; 32(43):11172-11178. PubMed ID: 27297876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscopic and nanoscale study of wettability alteration of oil-wet calcite surface in presence of magnesium and sulfate ions.
    Karoussi O; Hamouda AA
    J Colloid Interface Sci; 2008 Jan; 317(1):26-34. PubMed ID: 17931645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.