BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1165 related articles for article (PubMed ID: 30132033)

  • 1. Development of SGLT1 and SGLT2 inhibitors.
    Rieg T; Vallon V
    Diabetologia; 2018 Oct; 61(10):2079-2086. PubMed ID: 30132033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What does sodium-glucose co-transporter 1 inhibition add: Prospects for dual inhibition.
    Dominguez Rieg JA; Rieg T
    Diabetes Obes Metab; 2019 Apr; 21 Suppl 2(Suppl 2):43-52. PubMed ID: 31081587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac ischemia-reperfusion injury under insulin-resistant conditions: SGLT1 but not SGLT2 plays a compensatory protective role in diet-induced obesity.
    Yoshii A; Nagoshi T; Kashiwagi Y; Kimura H; Tanaka Y; Oi Y; Ito K; Yoshino T; Tanaka TD; Yoshimura M
    Cardiovasc Diabetol; 2019 Jul; 18(1):85. PubMed ID: 31262297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potent Sodium/Glucose Cotransporter SGLT1/2 Dual Inhibition Improves Glycemic Control Without Marked Gastrointestinal Adaptation or Colonic Microbiota Changes in Rodents.
    Du F; Hinke SA; Cavanaugh C; Polidori D; Wallace N; Kirchner T; Jennis M; Lang W; Kuo GH; Gaul MD; Lenhard J; Demarest K; Ajami NJ; Liang Y; Hornby PJ
    J Pharmacol Exp Ther; 2018 Jun; 365(3):676-687. PubMed ID: 29674332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Na
    Koepsell H
    Pharmacol Ther; 2017 Feb; 170():148-165. PubMed ID: 27773781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2.
    Ghezzi C; Loo DDF; Wright EM
    Diabetologia; 2018 Oct; 61(10):2087-2097. PubMed ID: 30132032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SGLT1 inhibition: Pros and cons.
    Tsimihodimos V; Filippas-Ntekouan S; Elisaf M
    Eur J Pharmacol; 2018 Nov; 838():153-156. PubMed ID: 30240793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined SGLT1 and SGLT2 Inhibitors and Their Role in Diabetes Care.
    Danne T; Biester T; Kordonouri O
    Diabetes Technol Ther; 2018 Jun; 20(S2):S269-S277. PubMed ID: 29916741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors.
    Blaschek W
    Planta Med; 2017 Aug; 83(12-13):985-993. PubMed ID: 28395363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor.
    Lapuerta P; Zambrowicz B; Strumph P; Sands A
    Diab Vasc Dis Res; 2015 Mar; 12(2):101-10. PubMed ID: 25690134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences.
    Gallo LA; Wright EM; Vallon V
    Diab Vasc Dis Res; 2015 Mar; 12(2):78-89. PubMed ID: 25616707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2.
    Kanwal A; Singh SP; Grover P; Banerjee SK
    Anal Biochem; 2012 Oct; 429(1):70-5. PubMed ID: 22796500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring newer target sodium glucose transporter 2 for the treatment of diabetes mellitus.
    Vaidya HB; Goyal RK
    Mini Rev Med Chem; 2010 Sep; 10(10):905-13. PubMed ID: 21034414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the urinary glucose excretion contributions of SGLT2 and SGLT1: A quantitative systems pharmacology analysis in healthy individuals and patients with type 2 diabetes treated with SGLT2 inhibitors.
    Yakovleva T; Sokolov V; Chu L; Tang W; Greasley PJ; Peilot Sjögren H; Johansson S; Peskov K; Helmlinger G; Boulton DW; Penland RC
    Diabetes Obes Metab; 2019 Dec; 21(12):2684-2693. PubMed ID: 31423699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG.
    Chang HC; Yang SF; Huang CC; Lin TS; Liang PH; Lin CJ; Hsu LC
    Mol Biosyst; 2013 Aug; 9(8):2010-20. PubMed ID: 23657801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective SGLT2 inhibition by tofogliflozin reduces renal glucose reabsorption under hyperglycemic but not under hypo- or euglycemic conditions in rats.
    Nagata T; Fukazawa M; Honda K; Yata T; Kawai M; Yamane M; Murao N; Yamaguchi K; Kato M; Mitsui T; Suzuki Y; Ikeda S; Kawabe Y
    Am J Physiol Endocrinol Metab; 2013 Feb; 304(4):E414-23. PubMed ID: 23249697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of the kidneys in glucose homeostasis. Implication of sodium-glucose cotransporter 2 (SGLT2) in diabetes mellitus treatment].
    Girard J
    Nephrol Ther; 2017 Apr; 13 Suppl 1():S35-S41. PubMed ID: 28577741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition.
    Vallon V; Thomson SC
    Diabetologia; 2017 Feb; 60(2):215-225. PubMed ID: 27878313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knockout of Na
    Song P; Huang W; Onishi A; Patel R; Kim YC; van Ginkel C; Fu Y; Freeman B; Koepsell H; Thomson S; Liu R; Vallon V
    Am J Physiol Renal Physiol; 2019 Jul; 317(1):F207-F217. PubMed ID: 31091127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus.
    Song P; Onishi A; Koepsell H; Vallon V
    Expert Opin Ther Targets; 2016 Sep; 20(9):1109-25. PubMed ID: 26998950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.