These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 30132040)

  • 1. Neural circuits activated by error amplification and haptic guidance training techniques during performance of a timing-based motor task by healthy individuals.
    Milot MH; Marchal-Crespo L; Beaulieu LD; Reinkensmeyer DJ; Cramer SC
    Exp Brain Res; 2018 Nov; 236(11):3085-3099. PubMed ID: 30132040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single robotic session that guides or increases movement error in survivors post-chronic stroke: which intervention is best to boost the learning of a timing task?
    Bouchard AE; Corriveau H; Milot MH
    Disabil Rehabil; 2017 Aug; 39(16):1607-1614. PubMed ID: 27415452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of error-amplification and haptic-guidance training techniques for learning of a timing-based motor task by healthy individuals.
    Milot MH; Marchal-Crespo L; Green CS; Cramer SC; Reinkensmeyer DJ
    Exp Brain Res; 2010 Mar; 201(2):119-31. PubMed ID: 19787345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors.
    Bouchard AE; Corriveau H; Milot MH
    Front Syst Neurosci; 2015; 9():52. PubMed ID: 25873868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effectiveness of robotic training depends on motor task characteristics.
    Marchal-Crespo L; Rappo N; Riener R
    Exp Brain Res; 2017 Dec; 235(12):3799-3816. PubMed ID: 28983676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic guidance induces long-lasting changes in the movement pattern of a novel sport-specific motor task.
    Kümmel J; Kramer A; Gruber M
    Hum Mov Sci; 2014 Dec; 38():23-33. PubMed ID: 25238621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning a locomotor task: with or without errors?
    Marchal-Crespo L; Schneider J; Jaeger L; Riener R
    J Neuroeng Rehabil; 2014 Mar; 11():25. PubMed ID: 24594267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
    Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R
    Front Neurosci; 2019; 13():61. PubMed ID: 30837824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of haptic guidance and visual feedback on learning a complex tennis task.
    Marchal-Crespo L; van Raai M; Rauter G; Wolf P; Riener R
    Exp Brain Res; 2013 Nov; 231(3):277-91. PubMed ID: 24013789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task.
    Marchal-Crespo L; Michels L; Jaeger L; López-Olóriz J; Riener R
    Front Neurosci; 2017; 11():526. PubMed ID: 29021739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration.
    Liu J; Cramer SC; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2006 Aug; 3():20. PubMed ID: 16945148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement Strategy Discovery during Training via Haptic Guidance.
    Gibo TL; Abbink DA
    IEEE Trans Haptics; 2016; 9(2):243-54. PubMed ID: 26766379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Error-related Persistence of Motor Activity in Resting-state Networks.
    Bernardi NF; Van Vugt FT; Valle-Mena RR; Vahdat S; Ostry DJ
    J Cogn Neurosci; 2018 Dec; 30(12):1883-1901. PubMed ID: 30125221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study.
    Nocchi F; Gazzellini S; Grisolia C; Petrarca M; Cannatà V; Cappa P; D'Alessio T; Castelli E
    J Neuroeng Rehabil; 2012 Jul; 9():49. PubMed ID: 22828181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An fMRI pilot study to evaluate brain activation associated with locomotion adaptation.
    Marchal-Crespo L; Hollnagel C; Brügger M; Kollias S; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975371. PubMed ID: 22275575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.
    Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J
    PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a mixed controller that amplifies spatial errors while reducing timing errors.
    Marchal-Crespo L; Baumann T; Fichmann D; Maassen S; Duarte JE; Riener R
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5136-5139. PubMed ID: 28269423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain motor functional changes after somatosensory discrimination training.
    Sarasso E; Agosta F; Temporiti F; Adamo P; Piccolo F; Copetti M; Gatti R; Filippi M
    Brain Imaging Behav; 2018 Aug; 12(4):1011-1021. PubMed ID: 28861843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.