These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30132348)

  • 1. Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule.
    Bugarski M; Martins JR; Haenni D; Hall AM
    Am J Physiol Renal Physiol; 2018 Dec; 315(6):F1613-F1625. PubMed ID: 30132348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphoton imaging reveals differences in mitochondrial function between nephron segments.
    Hall AM; Unwin RJ; Parker N; Duchen MR
    J Am Soc Nephrol; 2009 Jun; 20(6):1293-302. PubMed ID: 19470684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live Imaging of Mitochondria in Kidney Tissue.
    Bugarski M; Ghazi S; Hall AM
    Methods Mol Biol; 2021; 2275():393-402. PubMed ID: 34118052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Photon Intravital Fluorescence Lifetime Imaging of the Kidney Reveals Cell-Type Specific Metabolic Signatures.
    Hato T; Winfree S; Day R; Sandoval RM; Molitoris BA; Yoder MC; Wiggins RC; Zheng Y; Dunn KW; Dagher PC
    J Am Soc Nephrol; 2017 Aug; 28(8):2420-2430. PubMed ID: 28250053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring NAD(P)H autofluorescence to assess mitochondrial metabolic functions in rat hippocampal-entorhinal cortex slices.
    Schuchmann S; Kovacs R; Kann O; Heinemann U; Buchheim K
    Brain Res Brain Res Protoc; 2001 Jul; 7(3):267-76. PubMed ID: 11431129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined Structural and Functional Imaging of the Kidney Reveals Major Axial Differences in Proximal Tubule Endocytosis.
    Schuh CD; Polesel M; Platonova E; Haenni D; Gassama A; Tokonami N; Ghazi S; Bugarski M; Devuyst O; Ziegler U; Hall AM
    J Am Soc Nephrol; 2018 Nov; 29(11):2696-2712. PubMed ID: 30301861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of murine kidney proximal tubule sub-segment derived cell lines reveals preferences in mitochondrial pathway activity.
    Ferreira RM; de Almeida R; Culp C; Witzmann F; Wang M; Kher R; Nagami GT; Mohallem R; Andolino CJ; Aryal UK; Eadon MT; Bacallao RL
    J Proteomics; 2023 Oct; 289():104998. PubMed ID: 37657718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury.
    Hall AM; Rhodes GJ; Sandoval RM; Corridon PR; Molitoris BA
    Kidney Int; 2013 Jan; 83(1):72-83. PubMed ID: 22992467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in NAD and Lipid Metabolism Drive Acidosis-Induced Acute Kidney Injury.
    Bugarski M; Ghazi S; Polesel M; Martins JR; Hall AM
    J Am Soc Nephrol; 2021 Feb; 32(2):342-356. PubMed ID: 33478973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live cell imaging of cytosolic NADH/NAD
    Masia R; McCarty WJ; Lahmann C; Luther J; Chung RT; Yarmush ML; Yellen G
    Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G97-G108. PubMed ID: 29025729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluorometric monitoring of NAD redox state in isolated perfused renal tubules.
    Balaban RS; Dennis VW; Mandel LJ
    Am J Physiol; 1981 Apr; 240(4):F337-42. PubMed ID: 7223891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating mitochondrial redox state using NADH and NADPH autofluorescence.
    Blacker TS; Duchen MR
    Free Radic Biol Med; 2016 Nov; 100():53-65. PubMed ID: 27519271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical changes in THP-1 macrophage metabolism in response to pro- and anti-inflammatory stimuli reported by label-free two-photon imaging.
    Smokelin I; Mizzoni C; Erndt-Marino J; Kaplan D; Georgakoudi I
    J Biomed Opt; 2020 Jan; 25(1):1-14. PubMed ID: 31953928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional imaging of mitochondria in saponin-permeabilized mice muscle fibers.
    Kuznetsov AV; Mayboroda O; Kunz D; Winkler K; Schubert W; Kunz WS
    J Cell Biol; 1998 Mar; 140(5):1091-9. PubMed ID: 9490722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial differences in endocytosis along the kidney proximal tubule.
    Polesel M; Hall AM
    Am J Physiol Renal Physiol; 2019 Dec; 317(6):F1526-F1530. PubMed ID: 31657246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nicotinamide nucleotide transhydrogenase is required for brain mitochondrial redox balance under hampered energy substrate metabolism and high-fat diet.
    Francisco A; Ronchi JA; Navarro CDC; Figueira TR; Castilho RF
    J Neurochem; 2018 Dec; 147(5):663-677. PubMed ID: 30281804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gluconeogenesis from glutamine and lactate in the isolated human renal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline.
    Conjard A; Martin M; Guitton J; Baverel G; Ferrier B
    Biochem J; 2001 Dec; 360(Pt 2):371-7. PubMed ID: 11716765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal gluconeogenesis: axial and internephron heterogeneity and the effect of parathyroid hormone.
    Wang MS; Kurokawa K
    Am J Physiol; 1984 Jan; 246(1 Pt 2):F59-66. PubMed ID: 6141734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MitoRACE: evaluating mitochondrial function in vivo and in single cells with subcellular resolution using multiphoton NADH autofluorescence.
    Willingham TB; Zhang Y; Andreoni A; Knutson JR; Lee DY; Glancy B
    J Physiol; 2019 Nov; 597(22):5411-5428. PubMed ID: 31490555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.