These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30132348)

  • 21. Elevated mitochondria-coupled NAD(P)H in endoplasmic reticulum of dopamine neurons.
    Tucker KR; Cavolo SL; Levitan ES
    Mol Biol Cell; 2016 Nov; 27(21):3214-3220. PubMed ID: 27582392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress.
    Kimura T; Takahashi A; Takabatake Y; Namba T; Yamamoto T; Kaimori JY; Matsui I; Kitamura H; Niimura F; Matsusaka T; Soga T; Rakugi H; Isaka Y
    Autophagy; 2013 Nov; 9(11):1876-86. PubMed ID: 24128672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish.
    Miskolci V; Tweed KE; Lasarev MR; Britt EC; Walsh AJ; Zimmerman LJ; McDougal CE; Cronan MR; Fan J; Sauer JD; Skala MC; Huttenlocher A
    Elife; 2022 Feb; 11():. PubMed ID: 35200139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sex different cytochrome-c uptake in the proximal tubule of the rat kidney.
    Kiesewetter F; Kugler P
    Histochemistry; 1985; 82(6):557-64. PubMed ID: 2993205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of NAD(P)H and flavoprotein autofluorescence transients to probe neuron and astrocyte responses to synaptic activation.
    Shuttleworth CW
    Neurochem Int; 2010 Feb; 56(3):379-86. PubMed ID: 20036704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glutamine synthesis is heterogeneous and differentially regulated along the rabbit renal proximal tubule.
    Ferrier B; Conjard A; Martin M; Baverel G
    Biochem J; 1999 Feb; 337 ( Pt 3)(Pt 3):543-50. PubMed ID: 9895300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of OAT1 and OAT3 in differentiating proximal tubules of the mouse kidney.
    Hwang JS; Park EY; Kim WY; Yang CW; Kim J
    Histol Histopathol; 2010 Jan; 25(1):33-44. PubMed ID: 19924639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intra- and inter-nephron heterogeneity of gluconeogenesis in the rat: effects of chronic metabolic acidosis and potassium depletion.
    Yamada H; Nakada J; Aizawa C; Endou H
    Pflugers Arch; 1986 Jul; 407(1):1-7. PubMed ID: 3737373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regional differences in oxidative metabolism and mitochondrial activity among cortical bone osteocytes.
    Frikha-Benayed D; Basta-Pljakic J; Majeska RJ; Schaffler MB
    Bone; 2016 Sep; 90():15-22. PubMed ID: 27260646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N-acetyl-cysteine increases cellular dysfunction in progressive chronic kidney damage after acute kidney injury by dampening endogenous antioxidant responses.
    Small DM; Sanchez WY; Roy SF; Morais C; Brooks HL; Coombes JS; Johnson DW; Gobe GC
    Am J Physiol Renal Physiol; 2018 May; 314(5):F956-F968. PubMed ID: 29357409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments.
    Venkatachalam MA; Bernard DB; Donohoe JF; Levinsky NG
    Kidney Int; 1978 Jul; 14(1):31-49. PubMed ID: 682423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-photon fluorescence lifetime imaging of intrinsic NADH in three-dimensional tumor models.
    Cong A; Pimenta RML; Lee HB; Mereddy V; Holy J; Heikal AA
    Cytometry A; 2019 Jan; 95(1):80-92. PubMed ID: 30343512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Axial heterogeneity of sodium-bicarbonate cotransporter expression in the rabbit proximal tubule.
    Abuladze N; Lee I; Newman D; Hwang J; Pushkin A; Kurtz I
    Am J Physiol; 1998 Mar; 274(3):F628-33. PubMed ID: 9530281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Illuminating mitochondrial function and dysfunction using multiphoton technology.
    Weinberg JM; Molitoris BA
    J Am Soc Nephrol; 2009 Jun; 20(6):1164-6. PubMed ID: 19470668
    [No Abstract]   [Full Text] [Related]  

  • 36. Cytosolic redox potential and phosphate transport in the proximal tubule of the rabbit. A study in the isolated perfused tubules.
    Yanagawa N; Nagami GT; Kurokawa K
    Miner Electrolyte Metab; 1985; 11(1):57-61. PubMed ID: 3974539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial Pathology and Glycolytic Shift during Proximal Tubule Atrophy after Ischemic AKI.
    Lan R; Geng H; Singha PK; Saikumar P; Bottinger EP; Weinberg JM; Venkatachalam MA
    J Am Soc Nephrol; 2016 Nov; 27(11):3356-3367. PubMed ID: 27000065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Characterization of surface fluorescence signals of isolated perfused rat kidney].
    Krinelke L; Kunz WS
    Biomed Biochim Acta; 1990; 49(11):1119-30. PubMed ID: 2094217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decreased expression of mitochondrial-derived H2O2 and hydroxyl radical in cytoresistant proximal tubules.
    Zager RA; Burkhart K
    Kidney Int; 1997 Oct; 52(4):942-52. PubMed ID: 9328933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transepithelial transport and metabolism of glycine in S1, S2, and S3 cell types of the rabbit proximal tubule.
    Parks LD; Barfuss DW
    Am J Physiol Renal Physiol; 2002 Dec; 283(6):F1208-15. PubMed ID: 12388405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.