BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3013239)

  • 21. Distinct functional roles of two active site thiols in UDPglucose 4-epimerase from Kluyveromyces fragilis.
    Bhattacharjee H; Bhaduri A
    J Biol Chem; 1992 Jun; 267(17):11714-20. PubMed ID: 1601848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphatidylcholine activation of human heart (R)-3-hydroxybutyrate dehydrogenase mutants lacking active center sulfhydryls: site-directed mutagenesis of a new recombinant fusion protein.
    Chelius D; Loeb-Hennard C; Fleischer S; McIntyre JO; Marks AR; De S; Hahn S; Jehl MM; Moeller J; Philipp R; Wise JG; Trommer WE
    Biochemistry; 2000 Aug; 39(32):9687-97. PubMed ID: 10933785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic mechanism and interactions of NAD+ with glyceraldehyde-3-phosphate dehydrogenase: correlation of EPR data and enzymatic studies.
    Wilder RT; Venkataramu SD; Dalton LR; Birktoft JJ; Trommer WE; Park JH
    Biochim Biophys Acta; 1989 Jul; 997(1-2):65-77. PubMed ID: 2546610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and properties of D-beta-hydroxybutyrate dehydrogenase from Zoogloea ramigera I-16-M.
    Nakada T; Fukui T; Saito T; Miki K; Oji C; Matsuda S; Ushijima A; Tomita K
    J Biochem; 1981 Feb; 89(2):625-35. PubMed ID: 7240131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions between apo-(D-beta-hydroxybutyrate dehydrogenase) and phospholipids studied by intrinsic and extrinsic fluorescence.
    el Kebbaj MS; Latruffe N; Monsigny M; Obrenovitch A
    Biochem J; 1986 Jul; 237(2):359-64. PubMed ID: 3800892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical modification of sulfhydryl groups in p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Involvement in catalysis and assignment in the sequence.
    van Berkel WJ; Weijer WJ; Müller F; Jekel PA; Beintema JJ
    Eur J Biochem; 1984 Dec; 145(2):245-56. PubMed ID: 6437811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and properties of crystalline 3-hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides.
    Bergmeyer HU; Gawehn K; Klotzsch H; Krebs HA; Williamson DH
    Biochem J; 1967 Feb; 102(2):423-31. PubMed ID: 4291491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid specificity of beta-hydroxybutyrate dehydrogenase activation.
    Grover AK; Slotboom AJ; de Haas GH; Hammes GG
    J Biol Chem; 1975 Jan; 250(1):31-8. PubMed ID: 1170169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence energy transfer measurements of spatial relationships between sulfhydryl groups of thiolase I from porcine heart.
    Izbicka E; Gilbert HF
    Biochemistry; 1984 Dec; 23(26):6383-8. PubMed ID: 6152180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical modification of rat liver cytosolic NADP(+)-linked isocitrate dehydrogenase by N-ethylmaleimide. Evidence for essential sulphydryl groups.
    Fatania HR; al-Nassar KE; Thomas N
    FEBS Lett; 1993 May; 322(3):245-8. PubMed ID: 8486157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial arrangement of coenzyme and substrates bound to L-3-hydroxyacyl-CoA dehydrogenase as studied by spin-labeled analogues of NAD+ and CoA.
    Hartmann D; Philipp R; Schmadel K; Birktoft JJ; Banaszak LJ; Trommer WE
    Biochemistry; 1991 Mar; 30(11):2782-90. PubMed ID: 1848777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial separation of the two essential thiol groups and the binding site of the exchangeable GTP in brain tubulin. A spin label study.
    Deinum J; Wallin M; Lagercrantz C
    Biochim Biophys Acta; 1981 Nov; 671(1):1-8. PubMed ID: 6272872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on regulatory functions of malic enzymes. IV. Effects of sulfhydryl group modification on the catalytic function of NAD-linked malic enzyme from Escherichia coli.
    Yamaguchi M
    J Biochem; 1979 Aug; 86(2):325-33. PubMed ID: 225306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of different classes of nonessential sulfhydryl groups in Escherichia coli adenylosuccinate synthetase.
    Dong Q; Soans C; Liu F; Fromm HJ
    Arch Biochem Biophys; 1990 Jan; 276(1):77-84. PubMed ID: 2153366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical modification of octopine dehydrogenase by thiol-specific reagents: evidence for the presence of an essential cysteine at the catalytic site.
    Sheikh S; Katiyar SS
    Biochim Biophys Acta; 1993 Oct; 1202(2):251-7. PubMed ID: 8399387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase.
    Markham GD; Bock CL; Schalk-Hihi C
    Biochemistry; 1999 Apr; 38(14):4433-40. PubMed ID: 10194364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on (Na+ + K+)-activated ATPase. XLII. Evidence for two classes of essential sulfhydryl groups.
    Schoot BM; De Pont JJ; Bonting SL
    Biochim Biophys Acta; 1978 Feb; 522(2):602-13. PubMed ID: 23852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localization of the substrate and oxalacetate binding site of succinate dehydrogenase.
    Kenney WC; Mowery PC; Seng RL; Singer TP
    J Biol Chem; 1976 Apr; 251(8):2369-73. PubMed ID: 177411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonfunctional nature of sulfhydryl groups for pigeon liver malic enzyme.
    Chang GG; Chueh SH
    Int J Pept Protein Res; 1980 Oct; 16(4):321-6. PubMed ID: 7461912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.