These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30132493)

  • 1. Inelastic behaviour of cellulose microfibril networks.
    Mohan S; Koenderink GH; Velikov KP
    Soft Matter; 2018 Aug; 14(33):6828-6834. PubMed ID: 30132493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system.
    Kiziltas A; Nazari B; Erbas Kiziltas E; Gardner DJ; Han Y; Rushing TS
    Carbohydr Polym; 2016 Apr; 140():393-9. PubMed ID: 26876866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Origin of Strength and Stiffness in Bamboo Fibrils.
    Youssefian S; Rahbar N
    Sci Rep; 2015 Jun; 5():11116. PubMed ID: 26054045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and rheology of microfibril-polymer networks.
    Veen SJ; Versluis P; Kuijk A; Velikov KP
    Soft Matter; 2015 Dec; 11(46):8907-12. PubMed ID: 26434637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignin containing cellulose nanofibers (LCNFs): Lignin content-morphology-rheology relationships.
    Yuan T; Zeng J; Wang B; Cheng Z; Chen K
    Carbohydr Polym; 2021 Feb; 254():117441. PubMed ID: 33357912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Young's modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks.
    Tanpichai S; Quero F; Nogi M; Yano H; Young RJ; Lindström T; Sampson WW; Eichhorn SJ
    Biomacromolecules; 2012 May; 13(5):1340-9. PubMed ID: 22423896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent rheological behaviour of bacterial cellulose hydrogel.
    Gao X; Shi Z; Kuśmierczyk P; Liu C; Yang G; Sevostianov I; Silberschmidt VV
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():153-9. PubMed ID: 26478298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersions of attractive semiflexible fiberlike colloidal particles from bacterial cellulose microfibrils.
    Kuijk A; Koppert R; Versluis P; van Dalen G; Remijn C; Hazekamp J; Nijsse J; Velikov KP
    Langmuir; 2013 Nov; 29(47):14356-60. PubMed ID: 24215548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear, non-linear and plastic bending deformation of cellulose nanocrystals.
    Chen P; Ogawa Y; Nishiyama Y; Ismail AE; Mazeau K
    Phys Chem Chem Phys; 2016 Jul; 18(29):19880-7. PubMed ID: 27388579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties.
    Pakutsah K; Aht-Ong D
    Int J Biol Macromol; 2020 Feb; 145():64-76. PubMed ID: 31874270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.
    Benítez AJ; Torres-Rendon J; Poutanen M; Walther A
    Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis.
    Zhao Z; Shklyaev OE; Nili A; Mohamed MN; Kubicki JD; Crespi VH; Zhong L
    J Phys Chem A; 2013 Mar; 117(12):2580-9. PubMed ID: 23418823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hydrophilic and hydrophobic interactions on the rheological behavior and microstructure of a ternary cellulose acetate system.
    Kadla JF; Korehei R
    Biomacromolecules; 2010 Apr; 11(4):1074-81. PubMed ID: 20235573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromechanics and poroelasticity of hydrated cellulose networks.
    Lopez-Sanchez P; Rincon M; Wang D; Brulhart S; Stokes JR; Gidley MJ
    Biomacromolecules; 2014 Jun; 15(6):2274-84. PubMed ID: 24784575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.
    El Miri N; Abdelouahdi K; Barakat A; Zahouily M; Fihri A; Solhy A; El Achaby M
    Carbohydr Polym; 2015 Sep; 129():156-67. PubMed ID: 26050901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From colloidal spheres to nanofibrils: extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression.
    Dimic-Misic K; Hummel M; Paltakari J; Sixta H; Maloney T; Gane P
    J Colloid Interface Sci; 2015 May; 446():31-43. PubMed ID: 25656557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic Properties of Core-Shell-Structured, Hemicellulose-Rich Nanofibrillated Cellulose in Dispersion and Wet-Film States.
    Tanaka R; Saito T; Hänninen T; Ono Y; Hakalahti M; Tammelin T; Isogai A
    Biomacromolecules; 2016 Jun; 17(6):2104-11. PubMed ID: 27142723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic behavior of cellulose acetate in a mixed solvent system.
    Appaw C; Gilbert RD; Khan SA; Kadla JF
    Biomacromolecules; 2007 May; 8(5):1541-7. PubMed ID: 17458930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.