These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30132501)

  • 1. Quantitative phase microscopy of red blood cells during planar trapping and propulsion.
    Ahmad A; Dubey V; Singh VR; Tinguely JC; Øie CI; Wolfson DL; Mehta DS; So PTC; Ahluwalia BS
    Lab Chip; 2018 Sep; 18(19):3025-3036. PubMed ID: 30132501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microdeformation of RBCs under oxidative stress measured by digital holographic microscopy and optical tweezers.
    Liu J; Zhu L; Zhang F; Dong M; Qu X
    Appl Opt; 2019 May; 58(15):4042-4046. PubMed ID: 31158157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode.
    Dasgupta R; Ahlawat S; Verma RS; Gupta PK
    Opt Express; 2011 Apr; 19(8):7680-8. PubMed ID: 21503077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical trapping and propulsion of red blood cells on waveguide surfaces.
    Ahluwalia BS; McCourt P; Huser T; Hellesø OG
    Opt Express; 2010 Sep; 18(20):21053-61. PubMed ID: 20941001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy.
    Mohanty K; Mohanty S; Monajembashi S; Greulich KO
    J Biomed Opt; 2007; 12(6):060506. PubMed ID: 18163801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional manipulation of red blood cells using optical tweezers.
    Xie Y; Liu X
    J Biophotonics; 2022 Feb; 15(2):e202100315. PubMed ID: 34773382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of mobile phone emissions on human red blood cells.
    Chowdhury A; Singh Y; Das U; Waghmare D; Dasgupta R; Majumder SK
    J Biophotonics; 2021 Aug; 14(8):e202100047. PubMed ID: 33871929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping.
    Bambardekar K; Dharmadhikari AK; Dharmadhikari JA; Mathur D; Sharma S
    J Biomed Opt; 2008; 13(6):064021. PubMed ID: 19123667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique.
    Agrawal R; Smart T; Nobre-Cardoso J; Richards C; Bhatnagar R; Tufail A; Shima D; H Jones P; Pavesio C
    Sci Rep; 2016 Mar; 6():15873. PubMed ID: 26976672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical trapping of red blood cells in living animals with a water immersion objective.
    Zhong MC; Gong L; Zhou JH; Wang ZQ; Li YM
    Opt Lett; 2013 Dec; 38(23):5134-7. PubMed ID: 24281528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods.
    Moon I; Yi F; Lee YH; Javidi B; Boss D; Marquet P
    Opt Express; 2013 Dec; 21(25):30947-57. PubMed ID: 24514667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated three-dimensional morphology-based clustering of human erythrocytes with regular shapes: stomatocytes, discocytes, and echinocytes.
    Ahmadzadeh E; Jaferzadeh K; Lee J; Moon I
    J Biomed Opt; 2017 Jul; 22(7):76015. PubMed ID: 28742920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy.
    Yi F; Moon I; Lee YH
    J Biomed Opt; 2015 Jan; 20(1):016005. PubMed ID: 25567613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Trapping and Micro-Raman Spectroscopy of Functional Red Blood Cells Using Vortex Beam for Cell Membrane Studies.
    C G; Shetty S; Bharati S; Chidangil S; Bankapur A
    Anal Chem; 2021 Apr; 93(13):5484-5493. PubMed ID: 33764040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus.
    Lee S; Park H; Kim K; Sohn Y; Jang S; Park Y
    Sci Rep; 2017 Apr; 7(1):1039. PubMed ID: 28432323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-level laser therapy as a modifier of erythrocytes morphokinetic parameters in hyperadrenalinemia.
    Deryugina AV; Ivashchenko MN; Ignatiev PS; Balalaeva IV; Samodelkin AG
    Lasers Med Sci; 2019 Oct; 34(8):1603-1612. PubMed ID: 30834462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detrended fluctuation analysis of membrane flickering in discocyte and spherocyte red blood cells using quantitative phase microscopy.
    Lee S; Lee JY; Park CS; Kim DY
    J Biomed Opt; 2011 Jul; 16(7):076009. PubMed ID: 21806270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser trap ionization for identification of human erythrocytes with variable hemoglobin quantitation.
    Kelley M; Cooper J; Devito D; Mushi R; Aguinaga MDP; Erenso DB
    J Biomed Opt; 2018 May; 23(5):1-10. PubMed ID: 29851330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer.
    Rappaz B; Barbul A; Emery Y; Korenstein R; Depeursinge C; Magistretti PJ; Marquet P
    Cytometry A; 2008 Oct; 73(10):895-903. PubMed ID: 18615599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.