These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30132740)

  • 41. Identification and characterization of rhizosphere fungal strain MF-91 antagonistic to rice blast and sheath blight pathogens.
    Wang YL; Liu SY; Mao XQ; Zhang Z; Jiang H; Chai RY; Qiu HP; Wang JY; Du XF; Li B; Sun GC
    J Appl Microbiol; 2013 May; 114(5):1480-90. PubMed ID: 23360472
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea.
    Ahn N; Kim S; Choi W; Im KH; Lee YH
    Mol Cells; 2004 Feb; 17(1):166-73. PubMed ID: 15055545
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purification and partial characterization of two chitinases from the mycoparasitic fungus Talaromyces flavus.
    Duo-Chuan LI; Chen S; Jing LU
    Mycopathologia; 2005 Feb; 159(2):223-9. PubMed ID: 15770448
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A highly conserved MAPK-docking site in Mst7 is essential for Pmk1 activation in Magnaporthe grisea.
    Zhao X; Xu JR
    Mol Microbiol; 2007 Feb; 63(3):881-94. PubMed ID: 17214742
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Botcinins A, B, C, and D, metabolites produced by Botrytis cinerea, and their antifungal activity against Magnaporthe grisea, a pathogen of rice blast disease.
    Tani H; Koshino H; Sakuno E; Nakajima H
    J Nat Prod; 2005 Dec; 68(12):1768-72. PubMed ID: 16378371
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A thermostable chitinase from the antagonistic Chromobacterium violaceum that inhibits the development of phytopathogenic fungi.
    Sousa AJS; Silva CFB; Sousa JS; Monteiro JE; Freire JEC; Sousa BL; Lobo MDP; Monteiro-Moreira ACO; Grangeiro TB
    Enzyme Microb Technol; 2019 Jul; 126():50-61. PubMed ID: 31000164
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress.
    Soundararajan S; Jedd G; Li X; Ramos-Pamploña M; Chua NH; Naqvi NI
    Plant Cell; 2004 Jun; 16(6):1564-74. PubMed ID: 15155882
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular characterization of a pathogenesis-related protein 8 gene encoding a class III chitinase in rice.
    Park CH; Kim S; Park JY; Ahn IP; Jwa NS; Im KH; Lee YH
    Mol Cells; 2004 Feb; 17(1):144-50. PubMed ID: 15055541
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein engineering of chit42 towards improvement of chitinase and antifungal activities.
    Kowsari M; Motallebi M; Zamani M
    Curr Microbiol; 2014 Apr; 68(4):495-502. PubMed ID: 24322404
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection.
    Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ
    Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptional activation of the alternative oxidase gene of the fungus Magnaporthe grisea by a respiratory-inhibiting fungicide and hydrogen peroxide.
    Yukioka H; Inagaki S; Tanaka R; Katoh K; Miki N; Mizutani A; Masuko M
    Biochim Biophys Acta; 1998 Nov; 1442(2-3):161-9. PubMed ID: 9804939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea.
    Odenbach D; Breth B; Thines E; Weber RW; Anke H; Foster AJ
    Mol Microbiol; 2007 Apr; 64(2):293-307. PubMed ID: 17378924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Cloning of a homologous gene of Magnaporthe grisea PMK1 type MAPK from Ustilaginoidea virens and functional identification by complement in Magnaporthe grisea corresponding mutant].
    Zhang Z; Du X; Chai R; Wang J; Qiu H; Mao X; Sun G
    Wei Sheng Wu Xue Bao; 2008 Nov; 48(11):1473-8. PubMed ID: 19149162
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea.
    Villalba F; Lebrun MH; Hua-Van A; Daboussi MJ; Grosjean-Cournoyer MC
    Mol Plant Microbe Interact; 2001 Mar; 14(3):308-15. PubMed ID: 11277428
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection.
    Viaud MC; Balhadère PV; Talbot NJ
    Plant Cell; 2002 Apr; 14(4):917-30. PubMed ID: 11971145
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Early diagnosis of blast fungus, Magnaporthe oryzae, in rice plant by using an ultra-sensitive electrically magnetic-controllable electrochemical biosensor.
    Yang W; Zhang H; Li M; Wang Z; Zhou J; Wang S; Lu G; Fu F
    Anal Chim Acta; 2014 Nov; 850():85-91. PubMed ID: 25441164
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variation in the LRR region of Pi54 protein alters its interaction with the AvrPi54 protein revealed by in silico analysis.
    Sarkar C; Saklani BK; Singh PK; Asthana RK; Sharma TR
    PLoS One; 2019; 14(11):e0224088. PubMed ID: 31689303
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice.
    Coca M; Peñas G; Gómez J; Campo S; Bortolotti C; Messeguer J; Segundo BS
    Planta; 2006 Feb; 223(3):392-406. PubMed ID: 16240149
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering a peptide aptamer to target calmodulin for the inhibition of Magnaporthe oryzae.
    Xu Q; Ye X; Ma X; Li H; Tang H; Tang Y; Liu Z
    Fungal Biol; 2019 Jul; 123(7):489-496. PubMed ID: 31196518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.