BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 30132998)

  • 1. Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries.
    Cheng M; Jiang Y; Yao W; Yuan Y; Deivanayagam R; Foroozan T; Huang Z; Song B; Rojaee R; Shokuhfar T; Pan Y; Lu J; Shahbazian-Yassar R
    Adv Mater; 2018 Sep; 30(39):e1800615. PubMed ID: 30132998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Ink Writing of Li
    Liu Z; Tian X; Liu M; Duan S; Ren Y; Ma H; Tang K; Shi J; Hou S; Jin H; Cao G
    Small; 2021 Feb; 17(6):e2002866. PubMed ID: 33470520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Polymer-in-Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid-State Lithium Batteries.
    Liu W; Yi C; Li L; Liu S; Gui Q; Ba D; Li Y; Peng D; Liu J
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12931-12940. PubMed ID: 33797171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries.
    He Y; Chen S; Nie L; Sun Z; Wu X; Liu W
    Nano Lett; 2020 Oct; 20(10):7136-7143. PubMed ID: 32857517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printing Electrolytes for Solid-State Batteries.
    McOwen DW; Xu S; Gong Y; Wen Y; Godbey GL; Gritton JE; Hamann TR; Dai J; Hitz GT; Hu L; Wachsman ED
    Adv Mater; 2018 May; 30(18):e1707132. PubMed ID: 29575234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.
    Fu K; Wang Y; Yan C; Yao Y; Chen Y; Dai J; Lacey S; Wang Y; Wan J; Li T; Wang Z; Xu Y; Hu L
    Adv Mater; 2016 Apr; 28(13):2587-94. PubMed ID: 26833897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid.
    Reinoso DM; de la Torre-Gamarra C; Fernández-Ropero AJ; Levenfeld B; Várez A
    ACS Appl Energy Mater; 2024 Feb; 7(4):1527-1538. PubMed ID: 38425377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries.
    Chen S; Che H; Feng F; Liao J; Wang H; Yin Y; Ma ZF
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43056-43065. PubMed ID: 31660726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Vertically Aligned Microchannel Three-Layer All Ceramic Lithium Ion Battery for High-Rate and Long-Cycle Electrochemical Energy Storage.
    Ji S; Wang X; Li K; Huan Y; Ma G; Su Y; Wei T
    Small; 2022 Apr; 18(13):e2107442. PubMed ID: 35128794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life.
    Tan G; Wu F; Zhan C; Wang J; Mu D; Lu J; Amine K
    Nano Lett; 2016 Mar; 16(3):1960-8. PubMed ID: 26862941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries.
    Xu Y; Gao L; Wu X; Zhang S; Wang X; Gu C; Xia X; Kong X; Tu J
    ACS Appl Mater Interfaces; 2021 May; 13(20):23743-23750. PubMed ID: 34000178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.
    Fu KK; Gong Y; Liu B; Zhu Y; Xu S; Yao Y; Luo W; Wang C; Lacey SD; Dai J; Chen Y; Mo Y; Wachsman E; Hu L
    Sci Adv; 2017 Apr; 3(4):e1601659. PubMed ID: 28435874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene Fluoride-Hexafluoropropylene) (PVDF-HFP) for Enhanced Solid-State Lithium-Sulfur Batteries.
    Xia Y; Wang X; Xia X; Xu R; Zhang S; Wu J; Liang Y; Gu C; Tu J
    Chemistry; 2017 Oct; 23(60):15203-15209. PubMed ID: 28875509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Charge Density Polymerized Ionic Networks Boosting High Ionic Conductivity as Quasi-Solid Electrolytes for High-Voltage Batteries.
    Tian X; Yi Y; Yang P; Liu P; Qu L; Li M; Hu YS; Yang B
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4001-4010. PubMed ID: 30608130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Metal-Organic-Framework-Based Electrolyte with Nanowetted Interfaces for High-Energy-Density Solid-State Lithium Battery.
    Wang Z; Tan R; Wang H; Yang L; Hu J; Chen H; Pan F
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29178151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.
    Wu JF; Pang WK; Peterson VK; Wei L; Guo X
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ceramic-Based Composite Solid Electrolyte for Lithium-Ion Batteries.
    Lim YJ; Kim HW; Lee SS; Kim HJ; Kim JK; Jung YG; Kim Y
    Chempluschem; 2015 Jul; 80(7):1100-1103. PubMed ID: 31973285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printable, high-performance solid-state electrolyte films.
    Ping W; Wang C; Wang R; Dong Q; Lin Z; Brozena AH; Dai J; Luo J; Hu L
    Sci Adv; 2020 Nov; 6(47):. PubMed ID: 33208368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.