BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 30133010)

  • 1. Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution.
    Gao Q; Zhang W; Shi Z; Yang L; Tang Y
    Adv Mater; 2019 Jan; 31(2):e1802880. PubMed ID: 30133010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell nanostructured electrocatalysts for water splitting.
    Yin X; Yang L; Gao Q
    Nanoscale; 2020 Aug; 12(30):15944-15969. PubMed ID: 32761000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition-Metal Carbides as Hydrogen Evolution Reduction Electrocatalysts: Synthetic Methods and Optimization Strategies.
    Zhang H; Yang X; Zhang H; Ma J; Huang Z; Li J; Wang Y
    Chemistry; 2021 Mar; 27(16):5074-5090. PubMed ID: 33188550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction.
    Kang Q; Lai D; Tang W; Lu Q; Gao F
    Chem Sci; 2021 Feb; 12(11):3818-3835. PubMed ID: 34163652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Miao M; Pan J; He T; Yan Y; Xia BY; Wang X
    Chemistry; 2017 Aug; 23(46):10947-10961. PubMed ID: 28474426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heteroatom-Doping of Non-Noble Metal-Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy.
    Wang J; Liao T; Wei Z; Sun J; Guo J; Sun Z
    Small Methods; 2021 Apr; 5(4):e2000988. PubMed ID: 34927849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonmetal-doping of noble metal-based catalysts for electrocatalysis.
    Li Z; Lu X; Teng J; Zhou Y; Zhuang W
    Nanoscale; 2021 Jul; 13(26):11314-11324. PubMed ID: 34184008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of modulation strategies for improving the catalytic performance of transition metal sulfide self-supported electrodes for the hydrogen evolution reaction.
    Liu Q; Liu K; Huang J; Hui C; Li X; Feng L
    Dalton Trans; 2024 Feb; 53(9):3959-3969. PubMed ID: 38294259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity Origins in Nanocarbons for the Electrocatalytic Hydrogen Evolution Reaction.
    Zhang L; Jia Y; Yan X; Yao X
    Small; 2018 Jun; 14(26):e1800235. PubMed ID: 29726095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in water-splitting electrocatalysis mediated by 2D noble metal materials.
    Tian L; Li Z; Song M; Li J
    Nanoscale; 2021 Jul; 13(28):12088-12101. PubMed ID: 34236371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advancements in Two-Dimensional Layered Molybdenum and Tungsten Carbide-Based Materials for Efficient Hydrogen Evolution Reactions.
    Karuppasamy K; Nichelson A; Vikraman D; Choi JH; Hussain S; Ambika C; Bose R; Alfantazi A; Kim HS
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion.
    Xiao S; Zheng Y; Wu X; Zhou M; Rong X; Wang L; Tang Y; Liu X; Qiu L; Cheng C
    Small; 2022 Oct; 18(41):e2203281. PubMed ID: 35989101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution.
    Sun H; Yan Z; Liu F; Xu W; Cheng F; Chen J
    Adv Mater; 2020 Jan; 32(3):e1806326. PubMed ID: 30932263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design Strategies of Transition-Metal Phosphate and Phosphonate Electrocatalysts for Energy-Related Reactions.
    Zhao H; Yuan ZY
    ChemSusChem; 2021 Jan; 14(1):130-149. PubMed ID: 33030810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallic Cobalt@Nitrogen-Doped Carbon Nanocomposites: Carbon-Shell Regulation toward Efficient Bi-Functional Electrocatalysis.
    Mo Q; Chen N; Deng M; Yang L; Gao Q
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37721-37730. PubMed ID: 29028301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metal-free hydrogen evolution catalysts for water splitting.
    Zou X; Zhang Y
    Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structural regulation of CoP nanorods by the tunable incorporation of oxygen for enhanced electrocatalytic activity during the hydrogen evolution reaction.
    Ma Y; Zhou G; Liu Z; Xu L; Sun D; Tang Y
    Nanoscale; 2020 Jul; 12(27):14733-14738. PubMed ID: 32618988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.