These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 30133010)

  • 21. Transition Metal Non-Oxides as Electrocatalysts: Advantages and Challenges.
    Das C; Sinha N; Roy P
    Small; 2022 Jul; 18(28):e2202033. PubMed ID: 35703063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.
    Tang C; Wang HF; Zhang Q
    Acc Chem Res; 2018 Apr; 51(4):881-889. PubMed ID: 29384364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy-Future Prospects.
    Jawhari AH; Hasan N
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts.
    Wu T; Dong C; Sun D; Huang F
    Nanoscale; 2021 Jan; 13(3):1581-1595. PubMed ID: 33444426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational Synthesis for a Noble Metal Carbide.
    Wakisaka T; Kusada K; Wu D; Yamamoto T; Toriyama T; Matsumura S; Akiba H; Yamamuro O; Ikeda K; Otomo T; Palina N; Chen Y; Kumara LSR; Song C; Sakata O; Xie W; Koyama M; Kubota Y; Kawaguchi S; Arevalo RL; Aspera SM; Arguelles EF; Nakanishi H; Kitagawa H
    J Am Chem Soc; 2020 Jan; 142(3):1247-1253. PubMed ID: 31750648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pyrite-Type Nanomaterials for Advanced Electrocatalysis.
    Gao MR; Zheng YR; Jiang J; Yu SH
    Acc Chem Res; 2017 Sep; 50(9):2194-2204. PubMed ID: 28825788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noble Metal Phosphides: Robust Electrocatalysts toward Hydrogen Evolution Reaction.
    Guo B; Wen X; Xu L; Ren X; Niu S; YangCheng R; Ma G; Zhang J; Guo Y; Xu P; Li S
    Small Methods; 2023 Dec; ():e2301469. PubMed ID: 38161258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis.
    Hunt ST; Nimmanwudipong T; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2014 May; 53(20):5131-6. PubMed ID: 24700729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molybdenum Carbide-Decorated Metallic Cobalt@Nitrogen-Doped Carbon Polyhedrons for Enhanced Electrocatalytic Hydrogen Evolution.
    Wu C; Liu D; Li H; Li J
    Small; 2018 Apr; 14(16):e1704227. PubMed ID: 29571215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic Modulation of Non-van der Waals 2D Electrocatalysts for Efficient Energy Conversion.
    Wang H; Chen J; Lin Y; Wang X; Li J; Li Y; Gao L; Zhang L; Chao D; Xiao X; Lee JM
    Adv Mater; 2021 Jul; 33(26):e2008422. PubMed ID: 34032317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition Metal Carbide Complex Architectures for Energy-Related Applications.
    Meng T; Cao M
    Chemistry; 2018 Nov; 24(63):16716-16736. PubMed ID: 29959856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Toward Hydrogen Evolution Reaction.
    Coy E; Yate L; Valencia DP; Aperador W; Siuzdak K; Torruella P; Azanza E; Estrade S; Iatsunskyi I; Peiro F; Zhang X; Tejada J; Ziolo RF
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30872-30879. PubMed ID: 28829574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrocatalytic performance of ultrasmall Mo
    Yu F; Gao Y; Lang Z; Ma Y; Yin L; Du J; Tan H; Wang Y; Li Y
    Nanoscale; 2018 Mar; 10(13):6080-6087. PubMed ID: 29546902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. N,P-Doped Molybdenum Carbide Nanofibers for Efficient Hydrogen Production.
    Ji L; Wang J; Teng X; Dong H; He X; Chen Z
    ACS Appl Mater Interfaces; 2018 May; 10(17):14632-14640. PubMed ID: 29637765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing Atomically Dispersed Metal Electrocatalysts for Hydrogen Evolution: Chemical Coordination Effect and Electronic Metal Support Interaction.
    Jiang S; Xue D; Zhang JN
    Chem Asian J; 2022 Jul; 17(14):e202200319. PubMed ID: 35570194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heteronanowires of MoC-Mo
    Lin H; Shi Z; He S; Yu X; Wang S; Gao Q; Tang Y
    Chem Sci; 2016 May; 7(5):3399-3405. PubMed ID: 29997835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface and Interface Engineering: Molybdenum Carbide-Based Nanomaterials for Electrochemical Energy Conversion.
    Ge R; Huo J; Sun M; Zhu M; Li Y; Chou S; Li W
    Small; 2021 Mar; 17(9):e1903380. PubMed ID: 31532899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces.
    Wan W; Tackett BM; Chen JG
    Chem Soc Rev; 2017 Apr; 46(7):1807-1823. PubMed ID: 28229154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides.
    Esposito DV; Hunt ST; Kimmel YC; Chen JG
    J Am Chem Soc; 2012 Feb; 134(6):3025-33. PubMed ID: 22280370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis.
    Fu Q; Han J; Wang X; Xu P; Yao T; Zhong J; Zhong W; Liu S; Gao T; Zhang Z; Xu L; Song B
    Adv Mater; 2021 Feb; 33(6):e1907818. PubMed ID: 32578254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.