These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30133049)

  • 1. Templated Chromophore Assembly on Peptide Scaffolds: A Structural Evolution.
    Rocard L; Wragg D; Jobbins SA; Luciani L; Wouters J; Leoni S; Bonifazi D
    Chemistry; 2018 Oct; 24(60):16136-16148. PubMed ID: 30133049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Templated Chromophore Assembly by Dynamic Covalent Bonds.
    Rocard L; Berezin A; De Leo F; Bonifazi D
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15739-43. PubMed ID: 26637106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.
    Ensslen P; Wagenknecht HA
    Acc Chem Res; 2015 Oct; 48(10):2724-33. PubMed ID: 26411920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-Modulated Self-Assembly of Chromophores toward Biomimetic Light-Harvesting Nanoarchitectonics.
    Zou Q; Liu K; Abbas M; Yan X
    Adv Mater; 2016 Feb; 28(6):1031-43. PubMed ID: 26273821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biohybrid photosynthetic antenna complexes for enhanced light-harvesting.
    Springer JW; Parkes-Loach PS; Reddy KR; Krayer M; Jiao J; Lee GM; Niedzwiedzki DM; Harris MA; Kirmaier C; Bocian DF; Lindsey JS; Holten D; Loach PA
    J Am Chem Soc; 2012 Mar; 134(10):4589-99. PubMed ID: 22375881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced light-harvesting capacity by micellar assembly of free accessory chromophores and LH1-like antennas.
    Harris MA; Sahin T; Jiang J; Vairaprakash P; Parkes-Loach PS; Niedzwiedzki DM; Kirmaier C; Loach PA; Bocian DF; Holten D; Lindsey JS
    Photochem Photobiol; 2014; 90(6):1264-76. PubMed ID: 25039896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micelle-Induced Self-Assembling Protein Nanowires: Versatile Supramolecular Scaffolds for Designing the Light-Harvesting System.
    Sun H; Zhang X; Miao L; Zhao L; Luo Q; Xu J; Liu J
    ACS Nano; 2016 Jan; 10(1):421-8. PubMed ID: 26634314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-directed artificial light-harvesting antenna.
    Dutta PK; Varghese R; Nangreave J; Lin S; Yan H; Liu Y
    J Am Chem Soc; 2011 Aug; 133(31):11985-93. PubMed ID: 21714548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting.
    Woller JG; Hannestad JK; Albinsson B
    J Am Chem Soc; 2013 Feb; 135(7):2759-68. PubMed ID: 23350631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting Chromophore-Protein Interactions through Linker Engineering To Tune Photoinduced Dynamics in a Biomimetic Light-Harvesting Platform.
    Delor M; Dai J; Roberts TD; Rogers JR; Hamed SM; Neaton JB; Geissler PL; Francis MB; Ginsberg NS
    J Am Chem Soc; 2018 May; 140(20):6278-6287. PubMed ID: 29741876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating Excited-State Dynamics of Individual Light-Harvesting Chromophores through Restricted Motions in a Hydrated Nanoscale Protein Cavity.
    Noriega R; Finley DT; Haberstroh J; Geissler PL; Francis MB; Ginsberg NS
    J Phys Chem B; 2015 Jun; 119(23):6963-73. PubMed ID: 26035585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct Crystalline Aromatic Structural Motifs: Identification, Classification, and Implications.
    Ramakrishnan R; Niyas MA; Lijina MP; Hariharan M
    Acc Chem Res; 2019 Nov; 52(11):3075-3086. PubMed ID: 31449389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembled Light-Harvesting System from Chromophores in Lipid Vesicles.
    Sahin T; Harris MA; Vairaprakash P; Niedzwiedzki DM; Subramanian V; Shreve AP; Bocian DF; Holten D; Lindsey JS
    J Phys Chem B; 2015 Aug; 119(32):10231-43. PubMed ID: 26230425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.
    Huo P; Coker DF
    J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein.
    Ma YZ; Miller RA; Fleming GR; Francis MB
    J Phys Chem B; 2008 Jun; 112(22):6887-92. PubMed ID: 18471010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient energy transfer from peripheral chromophores to the self-assembled zinc chlorin rod antenna: a bioinspired light-harvesting system to bridge the "green gap".
    Röger C; Müller MG; Lysetska M; Miloslavina Y; Holzwarth AR; Würthner F
    J Am Chem Soc; 2006 May; 128(20):6542-3. PubMed ID: 16704238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled fluorescent hexaazatriphenylenes that act as a light-harvesting antenna.
    Ishi-i T; Murakami K; Imai Y; Mataka S
    J Org Chem; 2006 Jul; 71(15):5752-60. PubMed ID: 16839159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Template-Free Construction of Highly Ordered Monolayered Fluorescent Protein Nanosheets: A Bioinspired Artificial Light-Harvesting System.
    Li X; Qiao S; Zhao L; Liu S; Li F; Yang F; Luo Q; Hou C; Xu J; Liu J
    ACS Nano; 2019 Feb; 13(2):1861-1869. PubMed ID: 30747517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.