These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30133258)

  • 1. A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations.
    Davidi D; Longo LM; Jabłońska J; Milo R; Tawfik DS
    Chem Rev; 2018 Sep; 118(18):8786-8797. PubMed ID: 30133258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The compositional and evolutionary logic of metabolism.
    Braakman R; Smith E
    Phys Biol; 2013 Feb; 10(1):011001. PubMed ID: 23234798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of Long-Range Evolutionary Constraint in Enzymes: Insights from Comparison to Pseudoenzymes with Similar Structures.
    Sharir-Ivry A; Xia Y
    Mol Biol Evol; 2018 Nov; 35(11):2597-2606. PubMed ID: 30202983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Site-Induced Evolutionary Constraints Follow Fold Polarity Principles in Soluble Globular Enzymes.
    Mayorov A; Dal Peraro M; Abriata LA
    Mol Biol Evol; 2019 Aug; 36(8):1728-1733. PubMed ID: 31004173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates.
    Aravind L; Koonin EV
    Genome Biol; 2000; 1(4):RESEARCH0007. PubMed ID: 11178247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamic basis of energy transduction in enzymes.
    Somogyi B; Welch GR; Damjanovich S
    Biochim Biophys Acta; 1984 Sep; 768(2):81-112. PubMed ID: 6089882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysing new reactions during evolution: economy of residues and mechanism.
    Bartlett GJ; Borkakoti N; Thornton JM
    J Mol Biol; 2003 Aug; 331(4):829-60. PubMed ID: 12909013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-catalytic Binding Sites Induce Weaker Long-Range Evolutionary Rate Gradients than Catalytic Sites in Enzymes.
    Sharir-Ivry A; Xia Y
    J Mol Biol; 2019 Sep; 431(19):3860-3870. PubMed ID: 31325440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of enzyme structure-function combination across three domains of life.
    Zhang Z; Tang YR
    Protein Pept Lett; 2007; 14(3):291-7. PubMed ID: 17346235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.
    Jack BR; Meyer AG; Echave J; Wilke CO
    PLoS Biol; 2016 May; 14(5):e1002452. PubMed ID: 27138088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme promiscuity: evolutionary and mechanistic aspects.
    Khersonsky O; Roodveldt C; Tawfik DS
    Curr Opin Chem Biol; 2006 Oct; 10(5):498-508. PubMed ID: 16939713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic and binding poly-reactivities shared by two unrelated proteins: The potential role of promiscuity in enzyme evolution.
    James LC; Tawfik DS
    Protein Sci; 2001 Dec; 10(12):2600-7. PubMed ID: 11714928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity of enzyme active sites.
    Todd AE; Orengo CA; Thornton JM
    Trends Biochem Sci; 2002 Aug; 27(8):419-26. PubMed ID: 12151227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of enzyme superfamilies.
    Glasner ME; Gerlt JA; Babbitt PC
    Curr Opin Chem Biol; 2006 Oct; 10(5):492-7. PubMed ID: 16935022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme promiscuity: a mechanistic and evolutionary perspective.
    Khersonsky O; Tawfik DS
    Annu Rev Biochem; 2010; 79():471-505. PubMed ID: 20235827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of novel members, structure-function analysis and evolutionary classification of the 2H phosphoesterase superfamily.
    Mazumder R; Iyer LM; Vasudevan S; Aravind L
    Nucleic Acids Res; 2002 Dec; 30(23):5229-43. PubMed ID: 12466548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulations of enzyme catalysis: finding out what has been optimized by evolution.
    Warshel A; Florián J
    Proc Natl Acad Sci U S A; 1998 May; 95(11):5950-5. PubMed ID: 9600897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic promiscuity and the evolution of new enzymatic activities.
    O'Brien PJ; Herschlag D
    Chem Biol; 1999 Apr; 6(4):R91-R105. PubMed ID: 10099128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity?
    Ma B; Kumar S; Tsai CJ; Hu Z; Nussinov R
    J Theor Biol; 2000 Apr; 203(4):383-97. PubMed ID: 10736215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.