BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 30133259)

  • 1. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices.
    Chen H; Ling M; Hencz L; Ling HY; Li G; Lin Z; Liu G; Zhang S
    Chem Rev; 2018 Sep; 118(18):8936-8982. PubMed ID: 30133259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries.
    He Q; Ning J; Chen H; Jiang Z; Wang J; Chen D; Zhao C; Liu Z; Perepichka IF; Meng H; Huang W
    Chem Soc Rev; 2024 Jul; 53(13):7091-7157. PubMed ID: 38845536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.
    Shi Y; Zhou X; Yu G
    Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale Polymeric Materials for Advanced Lithium Battery Applications.
    Kang J; Han DY; Kim S; Ryu J; Park S
    Adv Mater; 2023 Jan; 35(4):e2203194. PubMed ID: 35616903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of recent developments in rechargeable lithium-sulfur batteries.
    Kang W; Deng N; Ju J; Li Q; Wu D; Ma X; Li L; Naebe M; Cheng B
    Nanoscale; 2016 Sep; 8(37):16541-16588. PubMed ID: 27714087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncovering the Chemistry of Cross-Linked Polymer Binders via Chemical Bonds for Silicon-Based Electrodes.
    Chen Z; Zhang H; Dong T; Mu P; Rong X; Li Z
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47164-47180. PubMed ID: 33043666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Polymer Binder Materials for Lithium-Ion Battery Electrodes and Separators.
    Lee S; Koo H; Kang HS; Oh KH; Nam KW
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries.
    Li B; Xu H; Ma Y; Yang S
    Nanoscale Horiz; 2019 Jan; 4(1):77-98. PubMed ID: 32254146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Housing Sulfur in Polymer Composite Frameworks for Li-S Batteries.
    Hencz L; Chen H; Ling HY; Wang Y; Lai C; Zhao H; Zhang S
    Nanomicro Lett; 2019 Feb; 11(1):17. PubMed ID: 34137995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects.
    Fan E; Li L; Wang Z; Lin J; Huang Y; Yao Y; Chen R; Wu F
    Chem Rev; 2020 Jul; 120(14):7020-7063. PubMed ID: 31990183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emerging era of supramolecular polymeric binders in silicon anodes.
    Kwon TW; Choi JW; Coskun A
    Chem Soc Rev; 2018 Mar; 47(6):2145-2164. PubMed ID: 29411809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifunctional Binder with Nucleophilic Lithium Polysulfide Immobilization Ability for High-Loading, High-Thickness Cathodes in Lithium-Sulfur Batteries.
    Han P; Chung SH; Chang CH; Manthiram A
    ACS Appl Mater Interfaces; 2019 May; 11(19):17393-17399. PubMed ID: 31012569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-ion batteries: present and future.
    Hwang JY; Myung ST; Sun YK
    Chem Soc Rev; 2017 Jun; 46(12):3529-3614. PubMed ID: 28349134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage.
    Sun Y; Sun J; Sanchez JS; Xia Z; Xiao L; Chen R; Palermo V
    Chem Commun (Camb); 2023 Feb; 59(18):2571-2583. PubMed ID: 36749576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
    Liu Y; Zhou G; Liu K; Cui Y
    Acc Chem Res; 2017 Dec; 50(12):2895-2905. PubMed ID: 29206446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Investigation of the Alucone-Coating Enhancement on Silicon Anodes.
    Son SB; Wang Y; Xu J; Li X; Groner M; Stokes A; Yang Y; Cheng YT; Ban C
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40143-40150. PubMed ID: 28948765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications.
    Ko M; Oh P; Chae S; Cho W; Cho J
    Small; 2015 Sep; 11(33):4058-73. PubMed ID: 26108922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene and graphene-based materials for energy storage applications.
    Zhu J; Yang D; Yin Z; Yan Q; Zhang H
    Small; 2014 Sep; 10(17):3480-98. PubMed ID: 24431122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.