These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30133259)

  • 21. Graphene and graphene-based materials for energy storage applications.
    Zhu J; Yang D; Yin Z; Yan Q; Zhang H
    Small; 2014 Sep; 10(17):3480-98. PubMed ID: 24431122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designing high-energy lithium-sulfur batteries.
    Seh ZW; Sun Y; Zhang Q; Cui Y
    Chem Soc Rev; 2016 Oct; 45(20):5605-5634. PubMed ID: 27460222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advances of Cellulose-Based Materials and Their Promising Application in Sodium-Ion Batteries and Capacitors.
    Zhang T; Yang L; Yan X; Ding X
    Small; 2018 Nov; 14(47):e1802444. PubMed ID: 30198091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustainable Battery Materials from Biomass.
    Liedel C
    ChemSusChem; 2020 May; 13(9):2110-2141. PubMed ID: 32212246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Establishing a Resilient Conductive Binding Network for Si-Based Anodes via Molecular Engineering.
    Chen S; Song Z; Wang L; Chen H; Zhang S; Pan F; Yang L
    Acc Chem Res; 2022 Aug; 55(15):2088-2102. PubMed ID: 35866547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perspectives on Advanced Lithium-Sulfur Batteries for Electric Vehicles and Grid-Scale Energy Storage.
    Ni W
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene hybridization for energy storage applications.
    Li X; Zhi L
    Chem Soc Rev; 2018 May; 47(9):3189-3216. PubMed ID: 29512678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Lithium-Ion Battery Cathodes and Anodes Based on Branched Aramid Nanofibers.
    Flouda P; Oka S; Loufakis D; Lagoudas DC; Lutkenhaus JL
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34807-34817. PubMed ID: 34256563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small things make a big difference: binder effects on the performance of Li and Na batteries.
    Chou SL; Pan Y; Wang JZ; Liu HK; Dou SX
    Phys Chem Chem Phys; 2014 Oct; 16(38):20347-59. PubMed ID: 25032670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene: a promising 2D material for electrochemical energy storage.
    Dong Y; Wu ZS; Ren W; Cheng HM; Bao X
    Sci Bull (Beijing); 2017 May; 62(10):724-740. PubMed ID: 36659445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The emerging chemistry of sodium ion batteries for electrochemical energy storage.
    Kundu D; Talaie E; Duffort V; Nazar LF
    Angew Chem Int Ed Engl; 2015 Mar; 54(11):3431-48. PubMed ID: 25653194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Progress on Molybdenum Oxides for Rechargeable Batteries.
    Tang K; Farooqi SA; Wang X; Yan C
    ChemSusChem; 2019 Feb; 12(4):755-771. PubMed ID: 30478957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-Based Binder Development for Lithium-Ion Batteries.
    Dobryden I; Montanari C; Bhattacharjya D; Aydin J; Ahniyaz A
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries.
    Fu A; Wang C; Pei F; Cui J; Fang X; Zheng N
    Small; 2019 Mar; 15(10):e1804786. PubMed ID: 30721557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards High Performance Chemical Vapour Deposition V
    Vernardou D; Drosos C; Kafizas A; Pemble ME; Koudoumas E
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33256209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
    Salunkhe RR; Lee YH; Chang KH; Li JM; Simon P; Tang J; Torad NL; Hu CC; Yamauchi Y
    Chemistry; 2014 Oct; 20(43):13838-52. PubMed ID: 25251360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface and interface engineering of electrode materials for lithium-ion batteries.
    Wang KX; Li XH; Chen JS
    Adv Mater; 2015 Jan; 27(3):527-45. PubMed ID: 25355133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.