These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 3013326)

  • 1. Polymer-hydroxyapatite composites for biodegradable bone fillers.
    Higashi S; Yamamuro T; Nakamura T; Ikada Y; Hyon SH; Jamshidi K
    Biomaterials; 1986 May; 7(3):183-7. PubMed ID: 3013326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive properties of polymer coated synthetic hydroxyapatite for bone grafting.
    Tencer AF; Mooney V; Brown KL; Silva PA
    J Biomed Mater Res; 1985 Oct; 19(8):957-69. PubMed ID: 2854131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and bone ingrowth properties of a polymer-coated, porous, synthetic, coralline hydroxyapatite bone-graft material.
    Tencer AF; Woodard PL; Swenson J; Brown KL
    Ann N Y Acad Sci; 1988; 523():157-72. PubMed ID: 2898222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning electron microscopic study of cell attachment to biodegradable polymer implants.
    Zislis T; Mark DE; Cerbas EL; Hollinger JO
    J Oral Implantol; 1989; 15(3):160-7. PubMed ID: 2561760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxylapatite/poly(L-lactide) composites: an animal study on push-out strengths and interface histology.
    Verheyen CC; de Wijn JR; van Blitterswijk CA; de Groot K; Rozing PM
    J Biomed Mater Res; 1993 Apr; 27(4):433-44. PubMed ID: 8385142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a degradable composite for orthopaedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer.
    Knowles JC; Hastings GW; Ohta H; Niwa S; Boeree N
    Biomaterials; 1992; 13(8):491-6. PubMed ID: 1321677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA).
    Hollinger JO
    J Biomed Mater Res; 1983 Jan; 17(1):71-82. PubMed ID: 6298242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biodegradable implants in orthopedic surgery].
    Sedel L; Chabot F; Christel P; de Charentenay X; Leray J; Vert M
    Rev Chir Orthop Reparatrice Appar Mot; 1978; 64 Suppl 2():92-6. PubMed ID: 154723
    [No Abstract]   [Full Text] [Related]  

  • 9. Biodegradable poly(l-lactide)/calcium phosphate composites with improved properties for orthopedics: Effect of filler and polymer crystallinity.
    Demina VA; Krasheninnikov SV; Buzin AI; Kamyshinsky RA; Sadovskaya NV; Goncharov EN; Zhukova NA; Khvostov MV; Pavlova AV; Tolstikova TG; Sedush NG; Chvalun SN
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110813. PubMed ID: 32409026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A scanning electron microscopic study of in vitro toxicity of ethylene-oxide-sterilized bone repair materials.
    Zislis T; Martin SA; Cerbas E; Heath JR; Mansfield JL; Hollinger JO
    J Oral Implantol; 1989; 15(1):41-6. PubMed ID: 2561372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced healing of large cranial defects by an osteoinductive protein in rabbits.
    Turk AE; Ishida K; Jensen JA; Wollman JS; Miller TA
    Plast Reconstr Surg; 1993 Sep; 92(4):593-600; discussion 601-2. PubMed ID: 8395062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro properties of a chitosan-bonded hydroxyapatite bone-filling paste.
    Ito M
    Biomaterials; 1991 Jan; 12(1):41-5. PubMed ID: 1849026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-vivo degradation of poly(lactic acid) of different molecular weights.
    Chawla AS; Chang TM
    Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):153-62. PubMed ID: 3841816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobile and immobile hydroxyapatite integration and resorption and its influence on bone.
    Donath K; Rohrer MD; Hormann K
    J Oral Implantol; 1987; 13(1):120-7. PubMed ID: 3035200
    [No Abstract]   [Full Text] [Related]  

  • 15. Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material.
    Elgendy HM; Norman ME; Keaton AR; Laurencin CT
    Biomaterials; 1993; 14(4):263-9. PubMed ID: 8386557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite reinforced polyethylene--a mechanically compatible implant material for bone replacement.
    Bonfield W; Grynpas MD; Tully AE; Bowman J; Abram J
    Biomaterials; 1981 Jul; 2(3):185-6. PubMed ID: 6268209
    [No Abstract]   [Full Text] [Related]  

  • 17. Biodegradation behavior of various calcium phosphate materials in bone tissue.
    Klein CP; Driessen AA; de Groot K; van den Hooff A
    J Biomed Mater Res; 1983 Sep; 17(5):769-84. PubMed ID: 6311838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite nanoparticles in poly-D,L-lactic acid coatings on porous titanium implants conducts bone formation.
    Jensen T; Jakobsen T; Baas J; Nygaard JV; Dolatshahi-Pirouz A; Hovgaard MB; Foss M; Bünger C; Besenbacher F; Søballe K
    J Biomed Mater Res A; 2010 Dec; 95(3):665-72. PubMed ID: 20725972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of heat treatment on the microstructure of plasma-sprayed hydroxyapatite coating.
    Ji H; Marquis PM
    Biomaterials; 1993; 14(1):64-8. PubMed ID: 8381033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of synthetic bone materials in dentistry.
    Ashman A
    Compendium; 1992 Nov; 13(11):1020, 1022, 1024-6, passim. PubMed ID: 1291066
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.