These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30133297)

  • 1. Enhancement of Coalescence-Induced Nanodroplet Jumping on Superhydrophobic Surfaces.
    Xie FF; Lu G; Wang XD; Wang DQ
    Langmuir; 2018 Sep; 34(37):11195-11203. PubMed ID: 30133297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets.
    Xie FF; Lu G; Wang XD; Wang BB
    Langmuir; 2018 Feb; 34(8):2734-2740. PubMed ID: 29384379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove.
    Lu D; Zhao M; Zhang H; Yang Y; Zheng Y
    Langmuir; 2020 May; 36(19):5444-5453. PubMed ID: 32311257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove.
    Liu C; Zhao M; Zheng Y; Lu D; Song L
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32542-32554. PubMed ID: 34180653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces.
    Chen X; Patel RS; Weibel JA; Garimella SV
    Sci Rep; 2016 Jan; 6():18649. PubMed ID: 26725512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Simulation of Coalescence-Induced Jumping of Multidroplets on Superhydrophobic Surfaces: Initial Droplet Arrangement Effect.
    Wang K; Liang Q; Jiang R; Zheng Y; Lan Z; Ma X
    Langmuir; 2017 Jun; 33(25):6258-6268. PubMed ID: 28562053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coalescence-Induced Swift Jumping of Nanodroplets on Curved Surfaces.
    He X; Zhao L; Cheng J
    Langmuir; 2019 Jul; 35(30):9979-9987. PubMed ID: 31282161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Jumping-Droplet Departure.
    Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N
    Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces.
    Vahabi H; Wang W; Davies S; Mabry JM; Kota AK
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29328-29336. PubMed ID: 28771317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves.
    Peng Q; Yan X; Li J; Li L; Cha H; Ding Y; Dang C; Jia L; Miljkovic N
    Langmuir; 2020 Aug; 36(32):9510-9522. PubMed ID: 32689802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces.
    Yin C; Wang T; Che Z; Jia M; Sun K
    Langmuir; 2019 Dec; 35(49):16201-16209. PubMed ID: 31738548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How coalescing droplets jump.
    Enright R; Miljkovic N; Sprittles J; Nolan K; Mitchell R; Wang EN
    ACS Nano; 2014 Oct; 8(10):10352-62. PubMed ID: 25171210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
    Chen X; Wang P; Zhang D
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38276-38284. PubMed ID: 31529958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes.
    Cha H; Chun JM; Sotelo J; Miljkovic N
    ACS Nano; 2016 Sep; 10(9):8223-32. PubMed ID: 27447844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laplace Pressure Difference Enhances Droplet Coalescence Jumping on Superhydrophobic Structures.
    Liu C; Zhao M; Lu D; Sun Y; Song L; Zheng Y
    Langmuir; 2022 Jun; 38(22):6923-6933. PubMed ID: 35451848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coalescence-Induced Droplet Jumping.
    Liu C; Zhao M; Zheng Y; Cheng L; Zhang J; Tee CATH
    Langmuir; 2021 Jan; 37(3):983-1000. PubMed ID: 33443436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the Impact of Surface Hydrophobicity on Droplet Coalescence and Jumping Dynamics.
    Li H; Yang W; Aili A; Zhang T
    Langmuir; 2017 Aug; 33(34):8574-8581. PubMed ID: 28767250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
    Aili A; Li H; Alhosani MH; Zhang T
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.