These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30133376)

  • 1. Long-latency reflexes for inter-effector coordination reflect a continuous state feedback controller.
    Crevecoeur F; Kurtzer I
    J Neurophysiol; 2018 Nov; 120(5):2466-2483. PubMed ID: 30133376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shoulder reflexes integrate elbow information at "long-latency" delay throughout a corrective action.
    Kurtzer IL
    J Neurophysiol; 2019 Feb; 121(2):549-562. PubMed ID: 30540519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-latency reflexes of the human arm reflect an internal model of limb dynamics.
    Kurtzer IL; Pruszynski JA; Scott SH
    Curr Biol; 2008 Mar; 18(6):449-53. PubMed ID: 18356051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-latency reflexes of elbow and shoulder muscles suggest reciprocal excitation of flexors, reciprocal excitation of extensors, and reciprocal inhibition between flexors and extensors.
    Kurtzer I; Meriggi J; Parikh N; Saad K
    J Neurophysiol; 2016 Apr; 115(4):2176-90. PubMed ID: 26864766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The long-latency reflex is composed of at least two functionally independent processes.
    Pruszynski JA; Kurtzer I; Scott SH
    J Neurophysiol; 2011 Jul; 106(1):449-59. PubMed ID: 21543751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical actions of heterogenic reflexes among ankle stabilizers and their interactions with plantarflexors of the cat hindlimb.
    Bonasera SJ; Nichols TR
    J Neurophysiol; 1996 May; 75(5):2050-70. PubMed ID: 8734603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflex control of posterior shoulder muscles from arm afferents in healthy people.
    Elliott SC; Hanson JR; Wellington J; Alexander CM
    J Electromyogr Kinesiol; 2011 Dec; 21(6):1087-91. PubMed ID: 21764599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short latency heteronymous excitatory and inhibitory reflexes between antagonist and heteronymous muscles of the human shoulder and upper limb.
    McClelland VM; Miller S; Eyre JA
    Brain Res; 2001 Apr; 899(1-2):82-93. PubMed ID: 11311868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks.
    Zehr EP; Balter JE; Ferris DP; Hundza SR; Loadman PM; Stoloff RH
    J Physiol; 2007 Jul; 582(Pt 1):209-27. PubMed ID: 17463036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-latency responses during reaching account for the mechanical interaction between the shoulder and elbow joints.
    Kurtzer I; Pruszynski JA; Scott SH
    J Neurophysiol; 2009 Nov; 102(5):3004-15. PubMed ID: 19710379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinating long-latency stretch responses across the shoulder, elbow, and wrist during goal-directed reaching.
    Weiler J; Saravanamuttu J; Gribble PL; Pruszynski JA
    J Neurophysiol; 2016 Nov; 116(5):2236-2249. PubMed ID: 27535378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-dependent and task-dependent modulation of stretch reflexes during rhythmical hand tasks in humans.
    Xia R; Bush BM; Karst GM
    J Physiol; 2005 May; 564(Pt 3):941-51. PubMed ID: 15746170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Goal-dependent modulation of the long-latency stretch response at the shoulder, elbow, and wrist.
    Weiler J; Gribble PL; Pruszynski JA
    J Neurophysiol; 2015 Dec; 114(6):3242-54. PubMed ID: 26445871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential control of the scapulothoracic muscles in humans.
    Alexander C; Miley R; Stynes S; Harrison PJ
    J Physiol; 2007 May; 580(Pt.3):777-86. PubMed ID: 17218352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances.
    Fitzpatrick R; Burke D; Gandevia SC
    J Neurophysiol; 1996 Dec; 76(6):3994-4008. PubMed ID: 8985895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticomuscular coherence reflects somatosensory feedback gains during motor adaptation.
    Kasuga S; Momose N; Ushiyama J; Ushiba J
    Neurosci Res; 2018 Jun; 131():10-18. PubMed ID: 29030077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-dependent modulation of spinal and transcortical stretch reflexes linked to motor learning rate.
    Dimitriou M
    Behav Neurosci; 2018 Jun; 132(3):194-209. PubMed ID: 29809047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.