These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30134683)

  • 1. Glassy dynamics in mutant huntingtin proteins.
    Kang H; Luan B; Zhou R
    J Chem Phys; 2018 Aug; 149(7):072333. PubMed ID: 30134683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Dynamics of the Huntingtin Exon-1 N-Terminus: A Solution NMR Perspective.
    Baias M; Smith PE; Shen K; Joachimiak LA; Żerko S; Koźmiński W; Frydman J; Frydman L
    J Am Chem Soc; 2017 Jan; 139(3):1168-1176. PubMed ID: 28085263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sampling conformational space of intrinsically disordered proteins in explicit solvent: Comparison between well-tempered ensemble approach and solute tempering method.
    Han M; Xu J; Ren Y
    J Mol Graph Model; 2017 Mar; 72():136-147. PubMed ID: 28092832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the aggregation mechanism of huntingtin exon 1 protein fragment with different polyQ-lengths.
    Priya SB; Gromiha MM
    J Cell Biochem; 2019 Jun; 120(6):10519-10529. PubMed ID: 30672003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging β-Sheet Rich Conformations in Supercompact Huntingtin Exon-1 Mutant Structures.
    Kang H; Vázquez FX; Zhang L; Das P; Toledo-Sherman L; Luan B; Levitt M; Zhou R
    J Am Chem Soc; 2017 Jul; 139(26):8820-8827. PubMed ID: 28609090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of the Proline-Rich C-Terminus of Huntingtin Exon-1 Fibrils.
    Caulkins BG; Cervantes SA; Isas JM; Siemer AB
    J Phys Chem B; 2018 Oct; 122(41):9507-9515. PubMed ID: 30252478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins.
    Lee C; Kalmar L; Xue B; Tompa P; Daughdrill GW; Uversky VN; Han KH
    Biochim Biophys Acta; 2014 Mar; 1840(3):993-1003. PubMed ID: 24211251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary structures of native and pathogenic huntingtin N-terminal fragments.
    Długosz M; Trylska J
    J Phys Chem B; 2011 Oct; 115(40):11597-608. PubMed ID: 21910495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical Aspect of Huntingtin Protein During polyQ: An In Silico Insight.
    Gopalakrishnan C; Jethi S; Kalsi N; Purohit R
    Cell Biochem Biophys; 2016 Jun; 74(2):129-39. PubMed ID: 27094178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease.
    Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4406-4411. PubMed ID: 28400517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Dynamics Simulations Applied to Structural and Dynamical Transitions of the Huntingtin Protein: A Review.
    Moldovean SN; Chiş V
    ACS Chem Neurosci; 2020 Jan; 11(2):105-120. PubMed ID: 31841621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of the intrinsically disordered protein amelogenin.
    Apicella A; Marascio M; Colangelo V; Soncini M; Gautieri A; Plummer CJG
    J Biomol Struct Dyn; 2017 Jun; 35(8):1813-1823. PubMed ID: 27366858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phanto-IDP: compact model for precise intrinsically disordered protein backbone generation and enhanced sampling.
    Zhu J; Li Z; Tong H; Lu Z; Zhang N; Wei T; Chen HF
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38018910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-atom stability and oligomerization simulations of polyglutamine nanotubes with and without the 17-amino-acid N-terminal fragment of the Huntingtin protein.
    Côté S; Wei G; Mousseau N
    J Phys Chem B; 2012 Oct; 116(40):12168-79. PubMed ID: 22978784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergence of replica exchange molecular dynamics.
    Zhang W; Wu C; Duan Y
    J Chem Phys; 2005 Oct; 123(15):154105. PubMed ID: 16252940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating Mutations to Reduce Huntingtin Aggregation by Increasing Htt-N-Terminal Stability and Weakening Interactions with PolyQ Domain.
    Smaoui MR; Mazza-Anthony C; Waldispühl J
    Comput Math Methods Med; 2016; 2016():6247867. PubMed ID: 28096892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct binding interactions trigger opposite conformational modulations on pathogenic and wildtype Huntingtin exon 1 proteins.
    Guan J; Song Z; Wei G; Qiao Q
    Phys Chem Chem Phys; 2022 Oct; 24(40):24959-24974. PubMed ID: 36214227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamics of early-state transcriptional changes and aggregate formation in a Huntington's disease cell model.
    van Hagen M; Piebes DGE; de Leeuw WC; Vuist IM; van Roon-Mom WMC; Moerland PD; Verschure PJ
    BMC Genomics; 2017 May; 18(1):373. PubMed ID: 28499347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flanking Regions Determine the Structure of the Poly-Glutamine in Huntingtin through Mechanisms Common among Glutamine-Rich Human Proteins.
    Urbanek A; Popovic M; Morató A; Estaña A; Elena-Real CA; Mier P; Fournet A; Allemand F; Delbecq S; Andrade-Navarro MA; Cortés J; Sibille N; Bernadó P
    Structure; 2020 Jul; 28(7):733-746.e5. PubMed ID: 32402249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The folding equilibrium of huntingtin exon 1 monomer depends on its polyglutamine tract.
    Bravo-Arredondo JM; Kegulian NC; Schmidt T; Pandey NK; Situ AJ; Ulmer TS; Langen R
    J Biol Chem; 2018 Dec; 293(51):19613-19623. PubMed ID: 30315108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.