BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30134761)

  • 1. Mycobacterium avium subsp. hominissuis effector MAVA5_06970 promotes rapid apoptosis in secondary-infected macrophages during cell-to-cell spread.
    Danelishvili L; Rojony R; Carson KL; Palmer AL; Rose SJ; Bermudez LE
    Virulence; 2018; 9(1):1287-1300. PubMed ID: 30134761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for genes associated with the ability of Mycobacterium avium subsp. hominissuis to escape apoptotic macrophages.
    Bermudez LE; Danelishvili L; Babrack L; Pham T
    Front Cell Infect Microbiol; 2015; 5():63. PubMed ID: 26380226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Mycobacterium avium subsp. hominissuis secreted proteins using an in vitro system mimicking the phagosomal environment.
    Chinison JJ; Danelishvili L; Gupta R; Rose SJ; Babrak LM; Bermudez LE
    BMC Microbiol; 2016 Nov; 16(1):270. PubMed ID: 27829372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium avium biofilm attenuates mononuclear phagocyte function by triggering hyperstimulation and apoptosis during early infection.
    Rose SJ; Bermudez LE
    Infect Immun; 2014 Jan; 82(1):405-12. PubMed ID: 24191301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virulence of
    Rindi L; Lari N; Garzelli C
    Int J Mycobacteriol; 2018; 7(1):48-52. PubMed ID: 29516886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The environment of "Mycobacterium avium subsp. hominissuis" microaggregates induces synthesis of small proteins associated with efficient infection of respiratory epithelial cells.
    Babrak L; Danelishvili L; Rose SJ; Kornberg T; Bermudez LE
    Infect Immun; 2015 Feb; 83(2):625-36. PubMed ID: 25422262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of virulence determinants of Mycobacterium avium that impact on the ability to resist host killing mechanisms.
    Li YJ; Danelishvili L; Wagner D; Petrofsky M; Bermudez LE
    J Med Microbiol; 2010 Jan; 59(Pt 1):8-16. PubMed ID: 19745033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of a Host-to-Host Transmission Model for
    Bermudez LE; Rose SJ; Everman JL; Ziaie NR
    Front Cell Infect Microbiol; 2018; 8():123. PubMed ID: 29740544
    [No Abstract]   [Full Text] [Related]  

  • 9. Differential responses of bovine macrophages to Mycobacterium avium subsp. paratuberculosis and Mycobacterium avium subsp. avium.
    Weiss DJ; Evanson OA; Moritz A; Deng MQ; Abrahamsen MS
    Infect Immun; 2002 Oct; 70(10):5556-61. PubMed ID: 12228282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virulence-related Mycobacterium avium subsp hominissuis MAV_2928 gene is associated with vacuole remodeling in macrophages.
    Jha SS; Danelishvili L; Wagner D; Maser J; Li YJ; Moric I; Vogt S; Yamazaki Y; Lai B; Bermudez LE
    BMC Microbiol; 2010 Apr; 10():100. PubMed ID: 20359357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rough colony morphotype of
    Nishimura T; Shimoda M; Tamizu E; Uno S; Uwamino Y; Kashimura S; Yano I; Hasegawa N
    J Med Microbiol; 2020 Jul; 69(7):1020-1033. PubMed ID: 32589124
    [No Abstract]   [Full Text] [Related]  

  • 12. Microaggregate-associated protein involved in invasion of epithelial cells by Mycobacterium avium subsp. hominissuis.
    Babrak L; Danelishvili L; Rose SJ; Bermudez LE
    Virulence; 2015; 6(7):694-703. PubMed ID: 26252358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth.
    Lee KI; Whang J; Choi HG; Son YJ; Jeon HS; Back YW; Park HS; Paik S; Park JK; Choi CH; Kim HJ
    Sci Rep; 2016 Nov; 6():37804. PubMed ID: 27901051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of the genomes of clinical isolates of Mycobacterium avium subsp. hominissuis regarding virulence-related genes.
    Jeffrey B; Rose SJ; Gilbert K; Lewis M; Bermudez LE
    J Med Microbiol; 2017 Jul; 66(7):1063-1075. PubMed ID: 28671535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation on
    Kirubakar G; Schäfer H; Rickerts V; Schwarz C; Lewin A
    Virulence; 2020 Dec; 11(1):132-144. PubMed ID: 31996090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed cell death of Mycobacterium avium serovar 4-infected human macrophages prevents the mycobacteria from spreading and induces mycobacterial growth inhibition by freshly added, uninfected macrophages.
    Fratazzi C; Arbeit RD; Carini C; Remold HG
    J Immunol; 1997 May; 158(9):4320-7. PubMed ID: 9126994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Mycobacterium avium genes expressed during in vivo infection and the role of the oligopeptide transporter OppA in virulence.
    Danelishvili L; Stang B; Bermudez LE
    Microb Pathog; 2014 Nov; 76():67-76. PubMed ID: 25245008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Voltage-Dependent Anion Channels (VDAC) of Mycobacterium avium phagosome are associated with bacterial survival and lipid export in macrophages.
    Danelishvili L; Chinison JJJ; Pham T; Gupta R; Bermudez LE
    Sci Rep; 2017 Aug; 7(1):7007. PubMed ID: 28765557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterium avium MAV_2941 mimics phosphoinositol-3-kinase to interfere with macrophage phagosome maturation.
    Danelishvili L; Bermudez LE
    Microbes Infect; 2015 Sep; 17(9):628-37. PubMed ID: 26043821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential patterns of gene expression by bovine monocyte-derived macrophages associated with ingestion of mycobacterial organisms.
    Weiss DJ; Evanson OA; Deng M; Abrahamsen MS
    Microb Pathog; 2004 Oct; 37(4):215-24. PubMed ID: 15458782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.